
Signal Denoising using Wavelets in MatDeck
In this example, we use MatDeck wavelets to perform signal denoising using the thresholding
approach. Wavelet thresholding denoising is very popular among engineers. Properties of the
approach were investigated in a series of papers. MatDeck contains series of the function for wavelet
signal processing including single level discrete wavelet decomposition discretewavet(), multilevel
discrete wavelet decomposition wavedec(), discrete wavelet packet decomposition wavepacketd()
and corresponding reconstruction functions. MatDeck supports over 100 different wavelet filters which
can be obtained by wavefilter().

Noisy speech signal
Signal denoising is often needed for speech signals which are corrupted with additive Gaussian white
noise (AWGN). In this example, we use a recorded speech signal mixed with AWGN which is read from
a *.wav file.

File containing the noisy audio
 filename := "nsa_wbn.wav"

Parameters of the audio format props := wave properties c d filename

Reading the audio file data_f := wave read c d filename

 audio playc d [] props 0 , [] props 1 , data

Take only the subset of the signal for illustration data := subset c d data_f , 1000 , 0 , 1999 , 0

We plot a portion of the audio signal in the time domain. The small changes in the signal trend is
actually noise.

 A_plot := join mat colsc d T t_time , data

 t_time := xnodesc d 0 1 , size c d data - 2 / [] props 0

www.labdeck.com

Wavelet Packet Denoising

Next, we use the wavelet packet decomposition at the second level using Daubechies wavelet 12
known as db12. The decomposition produces four groups of the coefficients: approximation and three
details of the different levels. All these coefficients are displayed in the next figure.

Wavelet packet decomposition at level 2

 W_mat := wavepacketd c d data , 2 , "db12"

aproximation and detail coefficients
 W_signal := [] W_mat 0

 N_sampl :=

T

 xnodese f 0 1 , size c d col2vec c d W_signal , 0 - 2

 C_a := subsete f join mat cols c d N_sampl , col2vec c d W_signal , 0 , 0 , 0 , rows c d N_sampl - 1 , 1

 C_d1 := subsete f join mat cols c d N_sampl , col2vec c d W_signal , 1 , 0 , 0 , rows c d N_sampl - 1 , 1

 C_d2 := subsete f join mat cols c d N_sampl , col2vec c d W_signal , 2 , 0 , 0 , rows c d N_sampl - 1 , 1

 C_d3 := subsete f join mat cols c d N_sampl , col2vec c d W_signal , 3 , 0 , 0 , rows c d N_sampl - 1 , 1

Signal reconstruction

After thresholding has finished, the signal is reconstructed using a wavelet packet reconstruction with
the same Daubechies wavelet 12. We can inspect the noise reduction by hearing it.

 audio playc d [] props 0 , [] props 1 , data_r

Prepare the data structure for reconstruction

 W_matr :=
 W_signal
 [] W_mat 1

Wavelet packet reconstruction

 data_r := wavepacketr c d W_matr , "db12"

Hard thresholding

Detail coefficients of the highest precision, denoted by C_d3, are presumed to contain mostly AWGN.
In order to remove the noise, we compare the values to the threshold. All samples whose absolute
value is smaller than the predefined threshold will be set to zero. The method is known as hard
thresholding, and is implemented within the script function below.

 hthreshold c d mat_in , th_value , ind

{

}

 N_col := cols c d mat_in

 N_row := rows c d mat_in

 Temp := mat_in

 for c d i := 0 , i < N_row , i += 1
{

}

 ife f abs c d value at c d Temp , i , ind < th_value

{

}
 [] Temp i N_col + ind = 01

1

2

 returnc d Temp

1

2

3

4

5

Hard thresholding

 W_signalr := hthreshold c d W_signal , 10000 , 3

 Threshold value
 th := 1000

