
Declaring the class
MatDeck supports a object-oriented programming environment. In object-oriented programming, a class is
a program-code-template used for creating objects, providing initial values for the state (member variables)
and for implementations of behavior (member functions or methods). In MatDeck, the class name is used
as the name for the class (the template itself), the name for the default constructor of the class (a subroutine
that creates objects), and as the type of objects generated by the class. In the following segment we give
two examples of class declarations, object creation and manipulation in MatDeck.

Declaring class named person

 class person
{
fnm := 0
lnm := 0
 // Class constructor
person(firstName, lastName)
{
fnm = firstName
lnm = lastName

}
 // Member function
getName()
{
return(fnm + " " + lnm)

}
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

After class declaration, we can create objects of the given type in the following manner

 p := person("John", "Smith")17

We can use the member functions (methods) to manipulate with objects. For example, we can see values
related to the object, p, of the type person.

 pp := p.getName()18

We can show results within a Canvas as follows.

Properties of the object p = p object of type person

Result obtained by method getName() = pp "John Smith"

Type of the object p = type c d p "person"

Declaring class employee

In the following example we create a class employee and two objects of the type employee. Previous
coding is done in the Text Mode editor, however we illustrate that the code can be edited in a Canvas as
well.

www.labdeck.com

 ep2 := e2.getName c d

 = type c d e2 "employee"

Object e2 created

 e2 := employee c d "Jane" , "Doe" , "unknown"

 = ep2 "Jane Doe unknown"

 = e2 object of type employee

 class employee
{

}

 per := personc d "" , ""

 pos := ""

 employee c d firstName , lastName , position

{

}

 per = personc d firstName , lastName

 pos = position

1

2

 getName c d

{

}

 v := per.getName c d + " " + pos

 returnc d v

1

2

1

2

3

4

5

 Object e1 created

 e1 := employee c d "John" , "Doe" , "unknown"

 = e1 object of type employee

 ep1 := e1.getName c d

 = type c d e1 "employee"

 = ep1 "John Doe unknown"

