
Gas equations
Three moles of a diatomic, perfect gas is allowed to expand at constant pressure. The initial volume
is 1.3 m3 and the initial temperature is 350°K. If 10,000 Joules are transferred to the gas at the
source of the heat, what is the final volume and temperature?
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Solution
Since the process of the heat (Q) addition occurs at a constant pressure, we can write 

 
 Q  :=  μ   C p   a b T 2  -  T 1

Where μ is the number of moles of gas in the system, Cp is the molar specific heat at constant
pressure and T2 - T1 is the temperature difference between the 2 equilibrium states (see figures (a) and
(b)). Q is given (10,000 Joules), as is μ and T. We can solve T2 as a function of Cp. If we can calculate
the value of Cp by using kinetic theory, we would have obtained T2.

Consider a gas moving from an equilibrium state to another, via a thermodynamic process. We
assume that the process occurs at a constant volume.Using the 1st Law of Thermodynamics, we
obtain 

 (1) 
 ΔU  :=  Q  -  W
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Here, ΔU is the change in the internal energy of the gas during the process and Q and W are the heat
added to and  work done by the gas, respectively, during the process. Writing (1) in differential form 

       (2) 
  dU  =  dQ  -  dW

In general, the element of work done by the gas in an expansion is, by definition 

      (3)  
 dW  :=  F   ds

Where F is the force the gas exerts on the piston (see figure (a)) and ds is the distance the piston
moves during the expansion. Since F acts as the perpendicular to the face of the piston (F and ds are
parallel).
But F can be written in terms of the pressure (p), that the gas exerts on the piston face of area( A).
Using that in (3) 

     
 F  :=  pA

     
   dW  =  p   ds   A  =  p   dV

Where dV is the differential change in volume of the gas during the expansion. Substituting this into (2),
we find

      (4) 
 dU  :=  dQ  -  p   dV

Applying this equation to the above-mentioned isovolumic process, we obtain dU = dQ since dV =
0. By definition 

     
 dQ  :=  μ   C V   dT

Where CV is the molar specific heat of the gas at a constant volume and dT is the differential
temperature change the gas experiences due to the addition of heat dQ. 

      (5) 
 dU  :=  μ   C V   dT

We now assume that the change in internal energy of a gas is only a function of the temperature
difference experienced by the gas. Then, no matter what thermodynamic process the gas experiences,
(5) stays the same.

Consider next an isobaric thermodynamic process. Again, we apply (4). Since the process occurs at a
constant pressure



       (6) 
 dQ  :=  μ   C p   dT

Where Cp is the molar heat capacity at a constant pressure. Furthermore, from the ideal gas law pV =
μRT. If p is constant,

    
 
 p    

 dV
 dT

 =  μR

      (7) 
  p   dV  =  μ   R   dT

Using (6), (7) and (5) in (4)

     
  μ   C v   dT  =  μ   C p   dT  -  μ   R   dT

       (8) 
 C p  :=  C v  +  R

Equation (8) relates the molar specific heat at a constant pressure to the molar specific heat at a
constant volume. 

All the derivations up to now have been necessary in order to obtain the certain relations involving
molar specific heats, namely equations (5) and (8). We now turn to an examination of the internal
energy of a diatomic gas. Each method of energy storage of a diatomic molecule is called a degree of
freedom. If we view diatomic molecules as being dumbell-shaped, then it was within 5 degrees of
freedom (see figure (c) and (d)). The molecule may move translationally in 3 directions (x, y, z) with 3
kinetic energies (½ mvx

2, ½ mvy
2, ½ mvz

2). Furthermore, it may rotate about 3 axis (x, y, z), with kinetic
energies (½ Ixψx

2, ½  Iyψy
2, ½  Izψz

2). The rotational kinetic energy about the y axis is negligible (see
figure (d)) because Iy << Ix, Iz. Hence a diatomic molecule has 5 independent methods of energy
absorption, of 5 degrees of freedom. Each of these kinetic energy terms has the same form,
mathematically. That is, they are all of the form of a positive constant times the square of a variable
which has a domain extending form -∞ to +∞. The theorem of equipartition of energy tells us that, when
Newtonian mechanics is present and the number of gas particles is large, each of these forms have
the same average value per molecule( ½ kT). In other words, each degree of freedom of a gas
molecule, contributes an amount of ,½ kT , to the internal energy of the gas. For a diatomic gas then,
the internal energy per molecule is

    
 
 U i  :=  

 5
 2

  kT

The internal energy for μ moles of the molecules is

     
 U  :=  μ   N 0   U i

     
 = U  2.5   kT   N 0   μ



Using this in equation (5), we can solve to find CV

    
 
 C v  :=  

 1
 μ

  
 dU
 dT

     
 C v  :=  2.5   R

Using this fact and putting it into (8)

 
 C p  :=  C v  +  R

     
 = C p  3.5   R

Getting back to the original problem, use this value of Cp in the first equation

     
 = Q  3.5   T 2   R   μ  -  3.5   T 1   R   μ

     
 Q  :=  μ   C p   a b T 2  -  T 1

     
 T 1  :=  350   K      

 Q  :=  10000   J      
 μ  :=  3   mol     

 
 R  :=  8.31   

 J
 mol   K

    
 
 T 2  :=  T 1  +  

 Q
 3.5   μ   R

     
 = T 2  464.606   K

    
 
 V 1  :=  1.3    m

 3

Using the ideal gas law for the 2 equilibrium states

     
  pV 1  =  μ   R   T 1

     
  pV 2  =  μ   R   T 2

    
 
 V 2  :=  

 T 2

 T 1
  V 1

    
 
 = V 2  1.726    m

 3

    
 
  
 V 2

 V 1
 =  

 T 2

 T 1


