www.labdeck.com

Temperature Control using LabJack and MatDeck's
PID controller, with GUI Configuration

This document illustrates how the LabJack T7 device can be used to control ambient temperatures by
switching the electronic circuit on and off. When the circuit is switched on, the current through the resistors
causes it to heat up. Temperature measurement is performed by using MCP9701A temperature sensors.
The LabJack T7 device is used to switch the circuit on and off using a digital output (DIO in PWM mode)
and to measure the temperature using an analog input AIN. The PWM signal duty cycle, is set using a PID
controller which is implemented in MatDeck. MatDeck provides GUI forms for effective and intuitive
configuration of LabJack devices, as illustrated here.

Schematics of the electronic circuits

The schematics of the system described above for temperature control is displayed below. It should be
pointed out that the schematics are created in MatDeck, which is suitable for various professional
drawings.

OouT2
Temperature

VDD VOUT GND
1 2 3

BTS141 MCP9700A
IN2 H—3 rog'e —|E

Input

The description of the circuit is as follows:
Functionality

® IN2 and OUT2 demonstrate PID temperature control

Demo board schematic pin descriptions
® IN2 input - connected to the PWM driver output in order to heat up the resistor
e QOUT2 - output from the temperature sensor in mV

Connection to LabJack unit
® IN2is connected to the PWM output
e QUT2 is connected to Analog inputs

Parts:
® Forthe powerdriver, BTS 141 is used whichis a logic level low side driver.
e The temperature sensor used is MCP9700A-E/TO



~N o
(= R s T T N +UD-—--—-00~.D:|-NC>
©S9=zQ22C09 3900C0LEKLEa=zZSEZEZZZZ
EASRCETTRTTRTTRT bl Tl T T T W ™ ™ O O O O «
(Fy] = T T L] ™~ o B O RN ' - D S - R - SN . NI N T H Y
i T e T T Te Te e ™M Tig Mg Mg ™ Ma T Ta e Te Te Te Te Te T8 Te e e Te
g -Pn’«r,-.md-h-a] g(-—-'n-'fﬂ'-t‘-h'c-'r-'m‘e’f;;’ﬂf“@-ﬂﬁ'ﬂ'e’)
N—=mMmood st o0 O<C<O TN~ O OoOmMm—~ M~ M—AQ
> 0000002 ZJOOOOOZEZ(&}EEEEEEEZ
o UDEquqqu

LabJack T7

www.labjack.com

o
=
(U]

(] wn
= =

Use of LabJack T7

In this experiment, the LabJack T7 device is used to produce a digital PWM output which is connected to
the IN2. At the same time, T7 is used to measure the temperature by collecting the OUT2 signal at the AIN2
channel. MatDeck supports LabJack functions which can be used directly inside MatDeck's script to
configure LabJack devices and to generate and acquire signals from the electronic circuits as described
above. Here, details about the configuration of the selected features in this experiment are explained.

MatDeck also provides Graphical User Interface (GUI) plug-ins for simple, effective configuration. There
are three plug-ins for three different groups of pins: ljdioT7_config_form() is used to configure DIOs,
ljainT7 _config_form() is used to configure AINs, and ljdac_config_form() is used to configure DACs. The
details about the configuration of the selected features in this experiment are explained below.

GUI Configuration of DIO EF PWM out

Here, DIOO is used to produce the IN2 signals. When DIOO is high, the transistor is switched on and the
current through the resistors heats the temperature sensor. If DIOO is low, the transistor is switched off and
there is no current, thus the temperature will fall.

The GUI form for DIO configuration can be started using by lidioT7_config_form(), as follows. The form is
embedded within the canvas and used for the configuration of DIOs.

f := 1jdioT7_config_form(®, "DIO formi")
1jdioT7_config_form_configure(f)

PWM Out at FIOO(DIOO0) requires the clock source, thus the clock is first configured. There are three
parameters to select for the configuration: clock source, clock divisor and the roll value for the given clock.



There are three different clocks supported by the T7, the most common is clockO whose frequency is
80MHz. The clock divisor can be any power of two from 1, 2, up to 256, in this example we select a value
of 1. The roll value is determined according to the desired frequency of the PWM Out signal. For example,
if the desired frequency is 1kHz, the roll value is 80Hz/Divisor/1kHz=80000. In the GUI, it is possible to
choose and set the desired frequency or desired roll value. PWM output at FIOO (DIOO0) is configured by
selecting the appropriate option from the drop down menu. In the GU], itis possible to set the desired value
of the duty cycle directly to 50%.

LabJacdk - DIO Configuration Form

Device Type Connection Type Device ID

T7 o ANY o ANY

DIO(D:7) FIO(0:7)  DIO(8:15) EIQ(D:7)  DIO(16:19) CIO(D:3)  DIO(20:22) MIO(0:2)  EF Clock Source
DIOO DIO1 DIO2 DIO3

FWM Out X e 7 7

Desired Freg. (Hz) 1000

Duty Cide (%)

DI04 DIOS DICa DIO7

Configure

GUI Configuring Temperature Measurement

The temperature is measured by using the AIN2 channel of the T7, where the OUT2 signal is connected.
The low power linear active thermistor circuit , MCP9701A, is used as a temperature sensor. Here, OUT2
is the voltage that depends on the ambient temperature, which should be converted into temperature using
the linear function given in the data-sheet. The sensor transfer function is:



Vour = Tc"Ta+Voec
Here, Vour is the sensor output voltage, Ta is ambient temperature, T is the temperature coefficient, and
Voc is the sensor output voltage at 0°C. From the MCP9701A datasheet, Tc=19.5 mV/°C and
Vo:c=400mV. In order to determine the temperature from the voltage, we need the inverse of the function.

Ta=Vour/Tc-Vooc/Tc

Slope and offset can be determined as follows:

Tc := 0.0100

VO := 0.5

Slope (=1 / Tc
Offset := -VO / Tc

AIN2 is configured to use the Offset and Slope extended feature, EF_INDEX is 1, which automatically
adds a slope and an offset to analog readings according to the linear function above.

Slope =100 Offset =-50

MatDeck provides ljainT7_config_form() that can be used to set all the parameters graphically, which is
very convenient for the user. In the following segment, there is an illustration on how to use the AIN
configuration form. At the beginning, the form is evoked by calling the function ljainT7_config_form(). The
form is embedded within the canvas and used for the configuration of AINs.

f2 := 1jainT7_config_form(©, "AIN forml")
1jainT7_config_form_configure(f2)

Lablack - AIM Configuration Form

Device Type Connection Type Device ID

T7 v ANY - ANY

AL(D:3) AL(4:7) AI(3:11) AI(12:13) Stream All

ALD All AlZ AL3
- - Offset and Slope = -
Offset 50,0 |5

Slope 100.0 =

Configure



Use of Configured LabJack T7

In order to use the configuration and use the device, the LabJack T7 device should be opened in the
document:

' dev := ljdevice_open("any", "any", "any")

The temperature is automatically read using:

' Ta := ljdevice_read(dev, "AIN2_EF_READ_A")

Ta=29.861 C

PID temperature control

MatDeck provides a PID controller which can adjust the ambient temperature close to the sensor by
switching the transistor on and off in the circuits shown in the schematics from above. MatDeck's PID
controller is used in real-time operation to heat the system. The PID controller is a three component
controller having proportional, integral and derivative terms. A PID controller continuously calculates the
error value as the difference between a desired setpoint temperature and a measured temperature from
the AIN2 LabJack channel. It then applies a correction based on the proportional, integral, and derivative
terms using control variables. In the proposed example, the control variable is the duty cycle of the PWM
out signal at DIOQ. The user specifies the clock value which is the PID exchange period and the set point
which is related to the controlled system. The PID controller widget contains the graph where it is possible
to see the value of the measured process variable against the set point.

Auto-tuning PID controllers adjust its control parameters (proportional gain, integral gain, derivative gain)
to the optimum values for the desired control response. The Ziegler—Nichols method for auto-tuning is the
most common method in practice. The auto-tuning is based on the Ziegler—Nichols method, with the
following different controllers: p, pi, pid, less overshoot, no overshoot, and Pessen integral.

graph := vector_create(2, true, 0) //Graph to show the Tempereature
graph[1] = Ta
graphl := graph // Graph to show auto-tunning process

pid_period := 100

Target_T := 30

tunning_m := 2

// Call autotunning function

KPID := pid_autotune_direct(pid_period, Target_T, tunning_m, dev, 1, 1)
// Obtained proportional, integral and derivative terms

KP := KPID[O]
KI := KPID[1]
KD := KPID[2]

//Call PID function
pid_direct(pid_period, Target_T, KP, KI, KD, dev, 1, 1)




Tempereature controlled by PID Temperature during auto-tunning

33L Temperature [C] araph 33L Temperature [C] graph1
32 32
31 31k
234 29
28 28
Time [s] Time: [s]

27 7

i) 1.5 ] 4.5 B 7.5 W] 4 3 12 15 20

Finally, at the end, all extended features should be disabled and the device should be closed.

ljdevice_close(dev)

The code for the pid_direct() function is given in the next segment. The next part of the code is used to
read the temperature and to communicate with the PID controller continuously.

pid_direct(period, set_point, kp, ki, kd, 1ljdev, over, under)
{
point_value := 0
dt = 0
stop := false
error = 0
preverror := 0
inte := 0
manipulatedValue := 0
Temp := 0
tgr := vector_create(2, true, 0)
de = 0
curr_time := timenow()
tstart := curr_time
config_a := 0
roll value := 80000
//PID loop
while(!stop)
{
Temp = timenow()
dt = Temp - curr_time
if(dt == 0)
dt = 0.001
curr_time = Temp
point_value = ljdevice_read(ljdev, "AIN2_EF_READ_A") //read T
Ta = point_value
if ((Ta > (set_point + over)) || (Ta < (set_point -under)))
stop = true
tgr[0] = timenow() - tstart
tgr[l1] = Ta




graph = join_mat_rows(graph, tgr)

error = set_point - point_value

de = error - preverror

preverror = error

inte = inte + dt * error

manipulatedvValue = kp * error + ki * inte + kd * de / dt
if(manipulatedvalue < 0)

{
manipulatedvalue = 0
}
else if(manipulatedvalue > 100)
{
manipulatedvValue = 100
3

config_a = roll_value * manipulatedvalue / 100
ljdevice_write(dev, "DIOO_EF_CONFIG_A", config_a) //set control
sleep(period)

// pid autotune
pid_autotune_direct(period, set_point, ttype, ljdev, over, under)

{

false

=~
-
I

0
0
0
cycles := 5
finished := false
loopinterval := 0
pointvalue := 0
Temp = 0

mx := -1000000

mn := 1000000
thigh = 0
tlow := 0
minOutput :=
maxOutput :=
outputvalue
kpConstant :=
tiConstant := 0
tdConstant :=
isModeP := 0

// znModeP=0

// znModePI=1
// znModeBasicPID=2

// znModelLessOvershoot=3
// znModeNoOvershoot=4

// znModePessenIntegral=5
if(ttype == 0)

maxoutput

kpConstant = 0.5
tiConstant = 1.0
tdConstant = 0.0

isModeP = 0.0




else if(ttype == 1)
{
kpConstant =
tiConstant
tdConstant
isModeP = 1.0

1/

2.
1/1.2
0.

[OX N \V]

}

else if(ttype == 2)

{
kpConstant
tiConstant
tdConstant
isModeP = 1.0

I
[oNoNo]

.6
.5
.125

}

else if(ttype == 3)

{
kpConstant
tiConstant
tdConstant
isModeP = 1.0

I
[oNoNo]

.3
.5
.33

}

else if(ttype == 4)

{
kpConstant
tiConstant
tdConstant
isModeP = 1.0

(Il
[oNoNo]

.2
.5
.33

}
else if(ttype == 5)
{
kpConstant
tiConstant
tdConstant
isModeP = 1.0
}
ku 0 // ultimate gain
tu 0 //period of oscilations
counter := 0 //count cycles
paverage
iaverage
daverage
output :=
config_a
roll value := 80000 /////
tutimer := timenow()
timer := tutimer
starttime := tutimer
tgr := vector_create(2, true, 0)
// tunning loop
while(!'stop && !finished)
{
finished = (counter >= cycles)
pointvalue =1jdevice_read(ljdev, "AIN2_EF_READ_A") /////////////
Tk := pointvalue
ind :=((Tk > (set_point + over)) || (Tk < (set_point -under)))
if ((counter >= 1) && ind)
stop = true
Temp = timenow()
loopinterval = Temp - timer
timer = Temp

oo
[oNoNO]
[N NN

rue

[ o T | I 0

[oNeloNoNo]




Temp - starttime
tgr[1] pointvalue
graphl = join_mat_rows(graphil, tgr)
mx = max(mx, pointvalue)
mn = min(mn, pointvalue)
if(output && (pointvalue > set_point))
{
output = false
outputvValue = minOutput
Templ := timenow()
thigh = Templ - tutimer
if(thigh == 0)
thigh 0.001
tutimer = Templ
mx = set_point
}
if(!'output && (pointvalue < set_point))
{
output = true
outputValue = maxOutput
Temp2 := timenow()
tlow = Temp2 - tutimer
if(tlow == 0)
tlow = 0.001
tutimer = Temp2
ku = (4 * (maxOutput - minOutput) / 2) / (cpi() * (mx -mn) / 2)
tu = (tlow + thigh)
print(tu)

tgr[0]

kp = kpConstant * ku
ki = (loopinterval) * (kp * isModeP) / (tiConstant * tu)
kd = (tdConstant * kp * tu) / (loopinterval)

if(counter > 1)

{
paverage += kp
iaverage += ki
daverage += kd

}

mn = set_point

counter += 1

if(counter > cycles)

{
outputvValue = minOutput

kp = paverage / (counter -1)

ki = iaverage / (counter -1)

kd = daverage / (counter -1)
}

}
config_a = roll_value * outputValue / 100

ljdevice_write(dev, "DIOO_EF_CONFIG_A", config_a)
sleep(period)

}

ret_val := vector_create(3, false, 0)

ret_val[o] kp

ret_val[1l] ki

ret_val[2]

return(ret_val)




