
Temperature Control using LabJack and MatDeck's
PID controller, with GUI Configuration
This document illustrates how the LabJack T7 device can be used to control ambient temperatures by
switching the electronic circuit on and off. When the circuit is switched on, the current through the resistors
causes it to heat up. Temperature measurement is performed by using MCP9701A temperature sensors.
The LabJack T7 device is used to switch the circuit on and off using a digital output (DIO in PWM mode)
and to measure the temperature using an analog input AIN. The PWM signal duty cycle, is set using a PID
controller which is implemented in MatDeck. MatDeck provides GUI forms for effective and intuitive
configuration of LabJack devices, as illustrated here.

Schematics of the electronic circuits

The schematics of the system described above for temperature control is displayed below. It should be
pointed out that the schematics are created in MatDeck, which is suitable for various professional
drawings.

Logic
InputIN2

3.3V

OUT2
Temperature

VDD VOUT GND
1 2 3

MCP9700ABTS141

The description of the circuit is as follows:
Functionality

IN2 and OUT2 demonstrate PID temperature control

Demo board schematic pin descriptions
IN2 input - connected to the PWM driver output in order to heat up the resistor
OUT2 - output from the temperature sensor in mV

Connection to LabJack unit
IN2 is connected to the PWM output
OUT2 is connected to Analog inputs

Parts:
For the power driver, BTS 141 is used which is a logic level low side driver.
The temperature sensor used is MCP9700A-E/TO

www.labdeck.com

 Use of LabJack T7

In this experiment, the LabJack T7 device is used to produce a digital PWM output which is connected to
the IN2. At the same time, T7 is used to measure the temperature by collecting the OUT2 signal at the AIN2
channel. MatDeck supports LabJack functions which can be used directly inside MatDeck's script to
configure LabJack devices and to generate and acquire signals from the electronic circuits as described
above. Here, details about the configuration of the selected features in this experiment are explained.

MatDeck also provides Graphical User Interface (GUI) plug-ins for simple, effective configuration. There
are three plug-ins for three different groups of pins: ljdioT7_config_form() is used to configure DIOs,
ljainT7_config_form() is used to configure AINs, and ljdac_config_form() is used to configure DACs. The
details about the configuration of the selected features in this experiment are explained below.

GUI Configuration of DIO EF PWM out

Here, DIO0 is used to produce the IN2 signals. When DIO0 is high, the transistor is switched on and the
current through the resistors heats the temperature sensor. If DIO0 is low, the transistor is switched off and
there is no current, thus the temperature will fall.

The GUI form for DIO configuration can be started using by ljdioT7_config_form(), as follows. The form is
embedded within the canvas and used for the configuration of DIOs.

f := ljdioT7_config_form(0, "DIO form1")
ljdioT7_config_form_configure(f)

1
2

PWM Out at FIO0(DIO0) requires the clock source, thus the clock is first configured. There are three
parameters to select for the configuration: clock source, clock divisor and the roll value for the given clock.

There are three different clocks supported by the T7, the most common is clock0 whose frequency is
80MHz. The clock divisor can be any power of two from 1, 2, up to 256, in this example we select a value
of 1. The roll value is determined according to the desired frequency of the PWM Out signal. For example,
if the desired frequency is 1kHz, the roll value is 80Hz/Divisor/1kHz=80000. In the GUI, it is possible to
choose and set the desired frequency or desired roll value. PWM output at FIO0 (DIO0) is configured by
selecting the appropriate option from the drop down menu. In the GUI, it is possible to set the desired value
of the duty cycle directly to 50%.

GUI Configuring Temperature Measurement

The temperature is measured by using the AIN2 channel of the T7, where the OUT2 signal is connected.
The low power linear active thermistor circuit ,MCP9701A, is used as a temperature sensor. Here, OUT2
is the voltage that depends on the ambient temperature, which should be converted into temperature using
the linear function given in the data-sheet. The sensor transfer function is:

 V OUT = T C T A +V 0°C

Here, VOUT is the sensor output voltage, TA is ambient temperature, TC is the temperature coefficient, and
V0°C is the sensor output voltage at 0°C. From the MCP9701A datasheet, TC=19.5 mV/°C and
V0°C=400mV. In order to determine the temperature from the voltage, we need the inverse of the function.

 T A =V OUT /T C -V 0°C /T C

Slope and offset can be determined as follows:

Tc := 0.0100
V0 := 0.5
Slope := 1 / Tc
Offset := -V0 / Tc

3
4
5
6

AIN2 is configured to use the Offset and Slope extended feature, EF_INDEX is 1, which automatically
adds a slope and an offset to analog readings according to the linear function above.

 = Slope 100

 = Offset - 50

MatDeck provides ljainT7_config_form() that can be used to set all the parameters graphically, which is
very convenient for the user. In the following segment, there is an illustration on how to use the AIN
configuration form. At the beginning, the form is evoked by calling the function ljainT7_config_form(). The
form is embedded within the canvas and used for the configuration of AINs.

f2 := ljainT7_config_form(0, "AIN form1")
ljainT7_config_form_configure(f2)

7
8

Use of Configured LabJack T7

In order to use the configuration and use the device, the LabJack T7 device should be opened in the
document:

dev := ljdevice_open("any", "any", "any")9

The temperature is automatically read using:

Ta := ljdevice_read(dev, "AIN2_EF_READ_A")10

 C

 = Ta 29.861

PID temperature control

MatDeck provides a PID controller which can adjust the ambient temperature close to the sensor by
switching the transistor on and off in the circuits shown in the schematics from above. MatDeck's PID
controller is used in real-time operation to heat the system. The PID controller is a three component
controller having proportional, integral and derivative terms. A PID controller continuously calculates the
error value as the difference between a desired setpoint temperature and a measured temperature from
the AIN2 LabJack channel. It then applies a correction based on the proportional, integral, and derivative
terms using control variables. In the proposed example, the control variable is the duty cycle of the PWM
out signal at DIO0. The user specifies the clock value which is the PID exchange period and the set point
which is related to the controlled system. The PID controller widget contains the graph where it is possible
to see the value of the measured process variable against the set point.

Auto-tuning PID controllers adjust its control parameters (proportional gain, integral gain, derivative gain)
to the optimum values for the desired control response. The Ziegler–Nichols method for auto-tuning is the
most common method in practice. The auto-tuning is based on the Ziegler–Nichols method, with the
following different controllers: p, pi, pid, less overshoot, no overshoot, and Pessen integral.

graph := vector_create(2, true, 0) //Graph to show the Tempereature
graph[1] = Ta
graph1 := graph // Graph to show auto-tunning process
pid_period := 100
Target_T := 30
tunning_m := 2
// Call autotunning function
KPID := pid_autotune_direct(pid_period, Target_T, tunning_m, dev, 1, 1)
// Obtained proportional, integral and derivative terms
KP := KPID[0]
KI := KPID[1]
KD := KPID[2]
//Call PID function
pid_direct(pid_period, Target_T, KP, KI, KD, dev, 1, 1)

11
12
13
14
15
16
17
18
19
20
21
22
23
24

Finally, at the end, all extended features should be disabled and the device should be closed.

ljdevice_close(dev)25

The code for the pid_direct() function is given in the next segment. The next part of the code is used to
read the temperature and to communicate with the PID controller continuously.

pid_direct(period, set_point, kp, ki, kd, ljdev, over, under)
{
point_value := 0
dt := 0
stop := false
error := 0
preverror := 0
inte := 0
manipulatedValue := 0
Temp := 0
tgr := vector_create(2, true, 0)
de := 0
curr_time := timenow()
tstart := curr_time
config_a := 0
roll_value := 80000
//PID loop
while(!stop)
{
Temp = timenow()
dt = Temp - curr_time
if(dt == 0)
dt = 0.001

curr_time = Temp
point_value = ljdevice_read(ljdev, "AIN2_EF_READ_A") //read T
Ta = point_value
if ((Ta > (set_point + over)) || (Ta < (set_point -under)))
stop = true

tgr[0] = timenow() - tstart
tgr[1] = Ta

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

Here is the code for the auto-tunning function .

// pid autotune
pid_autotune_direct(period, set_point, ttype, ljdev, over, under)
{
stop := false
kp := 0
ki := 0
kd := 0
cycles := 5
finished := false
loopinterval := 0
pointvalue := 0
Temp := 0
mx := -1000000
mn := 1000000
thigh := 0
tlow := 0
minOutput := 0
maxOutput := 100
outputValue := maxOutput
kpConstant := 0
tiConstant := 0
tdConstant := 0
isModeP := 0
// znModeP=0
// znModePI=1
// znModeBasicPID=2
// znModeLessOvershoot=3
// znModeNoOvershoot=4
// znModePessenIntegral=5
if(ttype == 0)
{
 kpConstant = 0.5
 tiConstant = 1.0
 tdConstant = 0.0
 isModeP = 0.0

}

76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111

graph = join_mat_rows(graph, tgr)
error = set_point - point_value
de = error - preverror
preverror = error
inte = inte + dt * error
manipulatedValue = kp * error + ki * inte + kd * de / dt
if(manipulatedValue < 0)
{
manipulatedValue = 0

}
else if(manipulatedValue > 100)
{
manipulatedValue = 100

}
config_a = roll_value * manipulatedValue / 100
ljdevice_write(dev,"DIO0_EF_CONFIG_A", config_a) //set control
sleep(period)

}
}

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

else if(ttype == 1)
{
kpConstant = 1/2.2
 tiConstant = 1/1.2
 tdConstant = 0.0
 isModeP = 1.0

}
else if(ttype == 2)
{
kpConstant = 0.6
tiConstant = 0.5
tdConstant = 0.125
isModeP = 1.0

}
else if(ttype == 3)
{
kpConstant = 0.3
tiConstant = 0.5
tdConstant = 0.33
isModeP = 1.0

}
else if(ttype == 4)
{
kpConstant = 0.2
tiConstant = 0.5
tdConstant = 0.33
isModeP = 1.0

}
else if(ttype == 5)
{
kpConstant = 0.7
tiConstant = 0.4
tdConstant = 0.15
isModeP = 1.0

}
ku := 0 // ultimate gain
tu := 0 //period of oscilations
counter := 0 //count cycles
paverage := 0
iaverage := 0
daverage := 0
output := true
config_a := 0
roll_value := 80000 /////
tutimer := timenow()
timer := tutimer
starttime := tutimer
tgr := vector_create(2, true, 0)
// tunning loop
while(!stop && !finished)
{
finished = (counter >= cycles)
pointvalue =ljdevice_read(ljdev, "AIN2_EF_READ_A") /////////////
Tk := pointvalue
ind :=((Tk > (set_point + over)) || (Tk < (set_point -under)))
if ((counter >= 1) && ind)
stop = true

Temp = timenow()
loopinterval = Temp - timer
timer = Temp

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172

tgr[0] = Temp - starttime
tgr[1] = pointvalue
graph1 = join_mat_rows(graph1, tgr)
mx = max(mx, pointvalue)
mn = min(mn, pointvalue)
if(output && (pointvalue > set_point))
{
output = false
outputValue = minOutput
Temp1 := timenow()
thigh = Temp1 - tutimer
if(thigh == 0)
thigh = 0.001

tutimer = Temp1
mx = set_point

}
if(!output && (pointvalue < set_point))
{
output = true
outputValue = maxOutput
Temp2 := timenow()
tlow = Temp2 - tutimer
if(tlow == 0)
tlow = 0.001

tutimer = Temp2
ku = (4 * (maxOutput - minOutput) / 2) / (cpi() * (mx -mn) / 2)
tu = (tlow + thigh)
print(tu)
kp = kpConstant * ku
ki = (loopinterval) * (kp * isModeP) / (tiConstant * tu)
kd = (tdConstant * kp * tu) / (loopinterval)
if(counter > 1)
{
paverage += kp
iaverage += ki
daverage += kd

}
mn = set_point
counter += 1
if(counter > cycles)
{
outputValue = minOutput
kp = paverage / (counter -1)
ki = iaverage / (counter -1)
kd = daverage / (counter -1)

}
}
config_a = roll_value * outputValue / 100
ljdevice_write(dev,"DIO0_EF_CONFIG_A", config_a)
sleep(period)

}
ret_val := vector_create(3, false, 0)
ret_val[0] = kp
ret_val[1] = ki
ret_val[2] = kd
return(ret_val)

}

173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230

