
Curve fitting

Curve fitting is the process of constructing a mathematical function which has the best fit to a series of
data points. Curve fitting refers to either  a) interpolation, where an exact fit to the data is required, or
b) regression, where an unique function with a random error is constructed that approximately fits the
data.

Interpolation is the method of estimation of a value within a sequence of known values. In MatDeck
you have the following interpolation methods : 
Linear interpolation, Polynomial interpolation, Ration interpolation, Cubic spline, Akima spline, Hermite
spline, Cubic B spline and Bezier interpolation.

 a  :=  
 0  1  2  3  4  5  6
 0  0.6325  0.7402  0.1274 - 0.8293 - 0.9768 - 0.1133

The above example demonstrates the differences between interpolation methods. Linear interpolation
uses a linear function for each source data interval [xk , xk+1], while spline interpolation uses low-degree
polynomials in each of the intervals. 
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The number of interpolation points is a parameter which tells the interpolation function how many points
to create between every two source data point intervals [xk , xk+1]. 

Two interpolation point Ten interpolation points

Interpolation points parameters can be set from the Graph tab, Interpolation icon, as shown on the
picture bellow. Interpolation window refers to the selected graph, and you can change interpolation
method or number of interpolation points and after pressing the Apply button, change can be seen on
the graph.

To create interpolation equations for each source data interval [xk , xk+1] use the functions:
linearinterpmat, polyinterpeq, cubicsplinemat, akimasplinemat, hertmitsplinemat.



               Linear
interpolation equations

             Hermit 
    spline equations

    

 

 = linearinterpmat c d a  
 ,  [  0  1  ]  ,  [  1  2  ]  ,  [  2  3  ]  ,  [  3  4  ]
 0.633   x  0.108   x  + 0.525 - 0.613   x  + 1.966 - 0.957   x  + 2.997

    
 
 a1  :=  mat transpose c d hermitsplinemat c d a ,  1

    

 

 = a1  

 ,  [  0  1  ] - 0.262    x
 3

 +  0.262    x
 2

 +  0.633   x

 ,  [  1  2  ] - 0.098    x
 3

 +  0.129    x
 2

 +  0.406   x  + 0.196

 ,  [  2  3  ]  0.188    x
 3

 -  1.678    x
 2

 +  4.201   x  -  2.455

 ,  [  3  4  ]  0.577    x
 3

 -  5.937    x
 2

 +  19.273   x  -  19.822

 ,  [  4  5  ]  0.101    x
 3

 -  0.907    x
 2

 +  1.861   x  -  0.219

 ,  [  5  6  ] - 0.506    x
 3

 +  8.594    x
 2

 -  47.665   x  + 85.696

To create a interpolation equation for the specific source data interval [xk , xk+1] use the functions:
linearinterpeq, cubicsplineeq, akimasplineeq, hermitsplineeq, polyinterpeq, bezierinterpeq.

OR

OR

OR

    
 
 = linearinterpeq c d a ,  2 - 0.613   x  + 1.966     

 
 = linearinterpeq c d a ,  ,  [  2  3  ] - 0.613   x  + 1.966

    
 
 = cubicsplineeq c d a ,  0  0.731   x  -  0.098    x

 3     
 
 = cubicsplineeq c d a ,  ,  [  0  1  ]  0.731   x  -  0.098    x

 3

    
 
 = akimasplineeq c d a ,  4  24.185  -  14.225   x  + 2.610    x

 2
 -  0.154    x

 3

    
 
 = akimasplineeq c d a ,  ,  [  4  5  ]  24.185  -  14.225   x  + 2.610    x

 2
 -  0.154    x

 3

OR

    
 
 = hermitsplineeq c d a ,  1 ,  1 - 0.098    x

 3
 +  0.129    x

 2
 +  0.406   x  + 0.196

    
 
 = hermitsplineeq c d a ,  1 ,  ,  [  1  2  ] - 0.098    x

 3
 +  0.129    x

 2
 +  0.406   x  + 0.196

On the other hand, regression methods are statistical processes for estimating the relationships
among variables. They are used to define relations among the inner data values, but also a prediction



 of values beyond the range of the observed data.
When regression is used on graph, always turn on Data points for a better illustration of the problem
you are solving.

Regression methods that you have at your disposal are:

Linear regression
Exponential regression
Logarithmic regression
Power regression
Polynomial regression

    
 
 b  :=  excel read c d "R-square.xlsx" ,  "Sheet1" ,  "B2:C50" ,  false

To determine how well the chosen model fits the data, you should use the functions regressiontable
and regression. It is a sum of several statistics, displayed in a table: R-squared, Adjusted R-squared,
Standard Error of the Regression and the regression equation. These best-of-fit statistics helps us in
choosing the right regression method. You can also use them separately by using the functions:
rsquared (R-squared), rsquaredadjusted (Adjusted R-squared), esterror (Standard Error of the
Regression).

    

 

 = regressionc d b ,  "linear"  

  Value
 Reg. formula - 5.461   x  + 370.825

 RMSE  20.01
 R-sq  0.608

 R-sq(adj)  0.6

To evaluate the dependence of the starting parameters and display the dependence (regression)



 formula, use the following functions:

linfit - Linear regression
expfit - Exponential regression
logfit - Logarithmic regression
polyfit - Polynomial regression
powfit - Power regression

R-squared is a statistical measure of how close the data is to the fitted regression line, the higher it's
value is, the better. R-squared value is always between 0 and 100%.

The main limitations of R-squared is that it does not indicate if we have chosen an adequate
regression model, adding a predictor to a model always increases a R-squared's value. That means
that the model with more terms has higher R-squared's values, this property can easily mislead us to
make the wrong conclusion about the model itself. 

For the above example, best-of-fit statistics values are

R-squared value

    
 
 = rsquare c d b ,  "linear"  0.608

Adjusted R-squared is a modified version of R-squared that is adjusted to the number of model
predictors.
If the new predictor improves the model, the adjusted R-squared will increase. It will decrease if a
predictor improves the model less than can be expected by chance.

Adjusted R-squared values are always equal or lower than an R-squared value, and it can also be a
negative. For example, if we use polynomial regression on the same data source, we can see that the
Adjusted R-squared value increases when the polynomial degree is higher. This way you can find the
peaks for an Adjusted R-squared value and when it's values start to decline, you have found the optimal
number of predictors to include in your model.

    

 

 = rsquaree f b ,  
 "polynomial"

 3  0.618

    

 

 = rsquareadjustede f b ,  
 "polynomial"

 2  0.601    

 

 = rsquaree f b ,  
 "polynomial"

 2  0.609

    

 

 = rsquareadjustede f b ,  
 "polynomial"

 3  0.610

Standard Error of the Regression (RMSE) is the average value that the source data are located from
the regression line. Smaller values of error tells us that the data is closer to the regression line. 
Use these statistics to assess the precision of the model. About 95% of the source data should be 



located within the area of 2*RMSE from the regression line.

Create two matrices to
display area of

expectancy for points

Translate regression line for
2S value in each direction

Split source matrix into
two vectors

    
 
 d  :=  join mat cols c d bx ,  y3

    
 
 c  :=  join mat cols c d bx ,  y2

    
 
 y3  :=  by  -  2   esterror c d b ,  "linear"

    
 
 y2  :=  by  + 2   esterror c d b ,  "linear"

    
 
 by  :=  col2vec c d b ,  1

    
 
 bx  :=  col2vec c d b ,  0

To make a decision about  what is the best fitting model for this data set, we will have to use function
regression and compare given results for different fitting techniques. The results are:

    

 

 = regressionc d b ,  "linear"  

  Value
 Reg. formula - 5.461   x  + 370.825

 RMSE  20.01
 R-sq  0.608

 R-sq(adj)  0.6



    

 

 = regressione f b ,  
 "polynomial"

 3  

  Value

 Reg. formula  0.022    x
 3

 -  2.483    x
 2

 +  87.146   x  -  764.915

 RMSE  19.746
 R-sq  0.618

 R-sq(adj)  0.610

    

 

 = regressionc d b ,  "exponential"  

  Value

 Reg. formula  602.759    e
- 0.035   x

 RMSE  20.095
 R-sq  0.605

 R-sq(adj)  0.596

    

 

 = regressionc d b ,  "logarithmic"  

  Value

 Reg. formula - 208.824   lnc d x  + 921.341

 RMSE  20.033
 R-sq  0.607

 R-sq(adj)  0.599

    

 

 = regressionc d b ,  "power"  

  Value

 Reg. formula  19828.935    x
 -1.32766

 RMSE  20.452
 R-sq  0.591

 R-sq(adj)  0.582

    

 

 = regressione f b ,  
 "polynomial"

 2  

  Value

 Reg. formula  0.041    x
 2

 -  8.654   x  + 431.916

 RMSE  19.984
 R-sq  0.609

 R-sq(adj)  0.601

As we can see, while the degree of polynomial fit is growing, the R-squared and Adjusted R-squared
values also grow and the RMSE decreases. We will have to calculate a few more polynomial fits with
higher degree to determine the border from which the statistics values start falling. 
 
This is the longer way to determine the best fit. The easiest way is to use a function called
regressiontable, where you can compare all the fits simultaneously. The results are placed in a table
from where you can easily compare all the fitting methods and conclude which is the best.



From this table we can see that the best fitting method is the polynomial with ninth degree, because the
R-squared values are at their highest and the error values are at their smallest. The same values for
tenth degree polynomial fitting start to fall and errors start to become higher. 

    

 

 = regressiontable c d b  

 Method  R-square  Adj. R-sq  RMSE  SSE  Coeff Num.
 "lin"  0.608  0.6  20.01  19618.850  2

 "exp"  0.605  0.596  20.095  19787.302  2
 "log"  0.607  0.599  20.033  19664.546  2
 "pow"  0.591  0.582  20.452  20496.691  2
 "poly2"  0.609  0.601  19.984  19567.921  3
 "poly3"  0.618  0.610  19.746  19104.919  4
 "poly4"  0.633  0.626  19.352  18350.989  5
 "poly5"  0.634  0.626  19.34  18327.103  6
 "poly6"  0.637  0.63  19.247  18152.65  7
 "poly7"  0.373  0.36  25.306  31379.281  8
 "poly8"  0.639  0.631  19.214  18089.898  9
 "poly9"  0.641  0.633  19.162  17992.215  10


