www.labdeck.com

QR decomposition using GPU and CUDA

In this example, we will create a random 4x5 matrix using uniform distribution and calculate its QR
decomposition matrix. The calculation will be achieved using the Nvidia GPU card and CUDA with a group
of MatDeck functions that incorporate ArrayFire functionalities.

First, we will set the environment to use the GPU for calculations. Using the function,
afp_supported_backends, a list of all supported backends that can be used for calculations will be
produced. In our case, calculations can be made on the CPU, using OpenCL or CUDA framework.

cpu

afp_supported_backends() =| "opencl"
"cuda"

Default environment for calculations is the CPU, we can change the current environment with the function,
afp_set backend, and check which environment is currently in use with the afp_backend function.

afp_set _backend ("Cuda") =true

afp_backend() ="cuda"

In each environment, there can be several devices which support the calculations within it. To check the
number of devices which support calculations in the current environment, use the function,

afp_get _device_count, and the functions afp_get device and afp_set device to check/change current
device.

afp_get_device_count() =1

afp_get devi ce() =0

afp_set device (O) =true

To display information about currently selected devices, use the function afp_device info

"NVIDIA_GeForce_940MX"
"CUDA"
afp_device i nfo() = "1 2"

Il5-0"

Finally, we have set CUDA as a calculation backend and set the device with number O - Nvidia GeForce
GPU card with CUDA support as a device on which we will do all calculations.

Let's create a uniformly random 4x5 matrix with real values.

A:=afp_randu(4 , 5, "real")

We can print variable A to check that the input matrix is generated.

0.785 0.842 0.702 0.29 0.995
0.987 0.722 0.747 0.523 0.615
0.113 0.328 0.339 0.997 0.829
0.454 0.964 0.688 0.753 0.87

Now we can do the QR decomposition calculations on matrix A and place the resulting vector in variable B.
Resulting vector contains the orthogonal matrix Q and the upper triangle matrix, R.

B :=afp_qr(A)

1 0 0O O 0.987 0.722 0.747 0.523 0.615
0460 1 0O O 0 0.632 0.345 0.512 0.586
B = 0115 0389 1 O 0 0 0.119 0.738 0.530
0.796 0.422 -0.316 1 0 0 0 -0.109 0.425

There are separate functions for every member of the resulting vector.
Function afp_qr_q will calculate the orthogonal matrix Q

1 0 0 0

f (n)- 0460 1 0 0

alb_ AL =Y 0115 0389 1 0
1

0.796 0.422 -0.316

Function afp_qr_r will calculate the upper triangular matrix R

0.987 0.722 0.747 0523 0.615

0 0632 0.345 0512 0.586
afp_ar_r(A) = 0 0 0119 0.738 0.530
0O 0 0 -0109 0425

