
LU decomposition using CUDA
In this example we will create a random 4x5 matrix using uniform distribution and calculate its LU
decomposition matrix. The calculation will be achieved using the Nvidia GPU card and CUDA with a group
of MatDeck functions that incorporate ArrayFire functionalities.

First, we will set the environment to use the GPU for calculations. Using the function,
afp_supported_backends, a list of all supported backends that can be used for calculations will be
produced. In our case, calculations can be made on the CPU, using OpenCL or CUDA framework.

 = afp_supported_backends c d  

 "cpu"
 "opencl"
 "cuda"

Default environment for calculations is the CPU. We can change the current environment with the function,
afp_set_backend, and check which environment is currently in use with the afp_backend function. 

 = afp_set_backend c d "cuda"  true

  = afp_backend c d  "cuda"

In each environment, there can be several devices which support calculations within it. To check number of
devices which supports calculations in the current environment, use the function, afp_get_device_count,
and the functions afp_get_device and afp_set_device to check/change current device.

 = afp_get_device_count c d  1

  = afp_get_device c d  0

 = afp_set_device c d 0  true

To display information about currently selected device, use the function afp_device_info

 = afp_device_info c d  

 "NVIDIA_GeForce_940MX"
 "CUDA"
 "v11.2"
 "5.0"

Finally, we have set CUDA as a calculation backend and set the device with number 0 - Nvidia GeForce
graphic card as a device on which we will do all calculations.

Let's create a uniformly random 4x5 matrix with real values.

 A  :=  afp_randuc d 4 ,  5 ,  "real"

We can  print variable A to check that the input matrix is generated.

www.labdeck.com



    

 

 = A  

 0.918  0.362  0.148  0.829  0.614
 0.711  0.481  0.061  0.198  0.736
 0.813  0.140  0.951  0.036  0.839
 0.13  0.218  0.468  0.312  0.252

Now, we can do LU decomposition calculations on matrix A and place the resulting vector in variable B.
Resulting vector contains lower triangle matrix L, upper triangle matrix U and pivot vector.

    
 
 B  :=  afp_luc d A

    

 

 = B   

 1  0  0  0
 0.774  1  0  0
 0.885 - 0.899  1  0
 0.141  0.833  0.639  1

 

 0.918  0.362  0.148  0.829  0.614
 0  0.200 - 0.054 - 0.444  0.260
 0  0  0.771 - 1.096  0.529
 0  0  0  1.264 - 0.39

There are separate functions for every member of the resulting vector.
Function, afp_lu_low will, calculate the lower triangle matrix L

    

 

 = afp_lu_low c d A  

 1  0  0  0
 0.774  1  0  0
 0.885 - 0.899  1  0
 0.141  0.833  0.639  1

Function afp_lu_upp will calculate upper triangular matrix U

    

 

 = afp_lu_upp c d A  

 0.918  0.362  0.148  0.829  0.614
 0  0.200 - 0.054 - 0.444  0.260
 0  0  0.771 - 1.096  0.529
 0  0  0  1.264 - 0.39

And finally, function afp_lu_piv will return the pivot vector of the LU decomposition

    

 

 = afp_lu_pivc d A  

 0
 1
 2
 3


