
Benchmark FFT using GPU and CUDA
In this example we will create a random NxN matrix using uniform distribution and find the time needed to
calculate a 2D FFT of that matrix. Calculation will be achieved usinga Nvidia GPU card and CUDA with a
group of MatDeck functions that incorporate ArrayFire functionalities.

First, we will set the environment to use GPU for calculations. Using the function, afp_supported_backends,
we will get the list of all supported backends that can be used for calculations. In our case, calculations can
be made on the CPU, using OpenCL or CUDA framework.

 = afp_supported_backends c d

 "cpu"
 "opencl"
 "cuda"

The default environment for calculations is the CPU. We can change the current environment with the
function, afp_set_backend, and check which environment is currently in use with the afp_backend function.

 = afp_set_backend c d "cuda" true

 = afp_backend c d "cuda"

In each environment, there can be several devices which support calculations within it. To check the number
of devices which supports calculations in the current environment, use the function, afp_get_device_count,
and the functions afp_get_device and afp_set_device to check/change current device.

 = afp_get_device_count c d 1

 = afp_get_device c d 0

 = afp_set_device c d 0 true

To display information about currently selected devices, use the function afp_device_info

 = afp_device_info c d

 "NVIDIA_GeForce_940MX"
 "CUDA"
 "v11.2"
 "5.0"

Finally, we have set CUDA as a calculation backend and set the device with number 0 -Nvidia GeForce
graphic card as a device on which we will do all calculations.

Six iterations will be done to create a uniformly random NxN matrix with real values, calculate the 2D FFT
calculation time and Gigaflops benchmark in each iteration. Each iteration will have a different input matrix
size and the summary of the calculation will be displayed in the console window.

www.labdeck.com

In the following code, we will create the function bench() that will do all the calculations that we have
described.

bench()
{
print("Benchmar N x N 2D FFT:\n")
for(M := 7; M <= 12; M += 1)
{
N := 1 << M
print(to_string(N) + " x " + to_string(N) + "input matrix size")
A := afp_randu(N, N, "real")
a := timenow()
afp_fft2(A, 1, N, N)
b := timenow()
time := b - a
gflops := 10 * N * N * M / (time * 1000000000)
print(" - Time: " + to_string(time))
print(" - Gflops: " + to_string(gflops) + "\n")

}
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

Now, when the benchmark function is ready, all we have to do is to call the bench() function and analyze
printed console results.

bench()18

