
Benchmark FFT using GPU and CUDA
In this example we will create a random NxN matrix using uniform distribution and find the time needed to
calculate a 2D FFT of that matrix. Calculation will be achieved usinga Nvidia GPU card and CUDA with a
group of MatDeck functions that incorporate ArrayFire functionalities.

First, we will set the environment to use GPU for calculations. Using the function, afp_supported_backends,
we will get the list of all supported backends that can be used for calculations. In our case, calculations can
be made on the CPU, using OpenCL or CUDA framework.

 = afp_supported_backends c d  

 "cpu"
 "opencl"
 "cuda"

The default environment for calculations is the CPU. We can change the current environment with the
function, afp_set_backend, and check which environment is currently in use with the afp_backend function. 

 = afp_set_backend c d "cuda"  true

  = afp_backend c d  "cuda"

In each environment, there can be several devices which support calculations within it. To check the number
of devices which supports calculations in the current environment, use the function, afp_get_device_count,
and the functions afp_get_device and afp_set_device to check/change current device.

 = afp_get_device_count c d  1

  = afp_get_device c d  0

 = afp_set_device c d 0  true

To display information about currently selected devices, use the function afp_device_info

 = afp_device_info c d  

 "NVIDIA_GeForce_940MX"
 "CUDA"
 "v11.2"
 "5.0"

Finally, we have set CUDA as a calculation backend and set the device with number 0 -Nvidia GeForce
graphic card as a device on which we will do all calculations.

Six iterations will be done to create a uniformly random NxN matrix with real values, calculate the 2D FFT
calculation time and Gigaflops benchmark in each iteration. Each iteration will have a different input matrix
size and the summary of the calculation will be displayed in the console window.
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In the following code, we will create the function bench() that will do all the calculations that we have
described.

bench()
{
print("Benchmar N x N 2D FFT:\n")
for(M := 7; M <= 12; M += 1)
{
N := 1 << M
print(to_string(N) + " x " + to_string(N) + "input matrix size")
A := afp_randu(N, N, "real")
a := timenow()
afp_fft2(A, 1, N, N)
b := timenow()
time := b - a
gflops := 10 * N * N * M / (time * 1000000000)
print(" - Time: " + to_string(time))
print(" - Gflops: " + to_string(gflops) + "\n")

}
}
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Now, when the benchmark function is ready, all we have to do is to call the bench() function and analyze
printed console results.

bench()18


