www.labdeck.com

Cholesky decomposition using OpenCL

In this example we will create a random 5x5 matrix using uniform distribution and calculate its Cholesky
decomposition matrix. The calculation will be done by using a GPU card and OpenCL with a group of
MatDeck functions that incorporate ArrayFire functionalities.

First, we will set the environment for the GPU to be used in calculations. Using the function,
afp_supported _backends, a list of all supported backends that can be used for calculations will be created.
In our case, calculations can be made on the CPU or using OpenCL framework.

cpu

afp_supported_backends() =| "opencl"
"cuda"

The default environment for calculations is CPU, we can change the current environment with the function,
afp_set backend, and check which environment is currently in use with the afp_backend function.

afp_set _backend ("opencl") =true

afp_backend() ="opencl"

In each environment, there can be several devices which support calculations within it. To check the number
of devices which support calculations in the current environment we use afp_get_device_count, and use the
functions afp_get _device and afp_set_device to check/change the current device.

afp_get_device_count() =3

afp_get devi ce() =0

afp_set devi ce(1) =true

To display information about currently selected device use the function, afp_device_info

"Intel(R)_HD_Graphics_620"
o "OpenCL"
afp_device i nfo() = "Intel(R) OpenCL"

"2.1“

Finally, we have set OpenCL as a calculation backend and set the device with number 1 - integrated Intel
graphic card as a device on which we will do all calculations.

Let's create a uniformly random 5x5 matrix with real values.

A:=afp_randu(5 , 9, "real")

We can print variable A to check that the input matrix is generated.

0.601 0.55 0.158 0.364 0.675
0.028 0.286 0.371 0.416 0.611
A=] 0981 0.341 0.354 0.581 0.523
0.213 0.751 0.645 0.896 0.557
0.065 0.411 0.967 0.371 0.79

Now, we can do Cholesky decomposition calculations on matrix A and place resulting the vector in variable
B. The second argument determines if we want to display the upper or lower triangular matrix.

B :=afp_cho|esky(A , true)

_0.775 0.709 0.204 0.469 0.871-
0 -0.216 0.371 0.416 0.611
0 0 0.354 0.581 0.523
0 0 0 0.896 0.557
0 0 0 0 0.79

If we want to display the lower triangular matrix as our resulting matrix, we will use false as the second
argument

0775 0 0 0 0
0.036 0534 O 0 0
afp_cholesky(A , false) =] 1.265 0.554 -1.552 0 0
0.274 1.388 0.645 0.896 O
0.084 0.763 0.967 0.371 0.79

