Programing with Python in MD products

Contents

Getting started With PYthONoo i s e e s areeas 1
.. 3
Getting started With PYThON IDEooi ittt et s et e e e et ee e e et a e e s ennbaee e ennneeas 5
Programming t00IDar - PYLNONcoiiiiiic ettt e e et e e et e e e et e e e e enareaeeeanes 6
Programming toolbar - Evaluate Build and Deploycoooviiiiiiiiiii e 6
2T T] e Lo 11) £ SRRPUPPN: 8
Programming TOOIDAr - SEELINGS ...uviiiiciiii it e e s s e e s s bt e e e e sbeaeesssnreeessanes 8
Programming Toolbar — PYthon BIOCKS..........uiiiiiiiiicciiie ettt e s saae e 10
MPY GUI Designer Files in IMD ProQUCTESeiiiciiieeeiiieeeccieeeeectte e e eeiveeeeetaeeeesaaeeeessnsaeeesansseeesnnneeeanns 12
OPENING GUI DESIGNEI .cciiiiiiiiiiittte et e ettt e e e e ettt e et e s s s s s aabarteeeesssassbbteaeeeesssassssseeeeeessssasseseaeeesssnnas 11
Y V2 o T o TSRS 13
Call FUNCEIONS ..ttt e s bt sae e et e et e b e e e b e e s bt e satesabe e bt e be e beenbeesbeesaeeentean 13

N aTeT a1V =T o U= ST 15

Users can initiate Python in 3 different ways in MatDeck products.

e Python IDE
e Python code blocks within documents
e (Call functions

Python IDE

The image below shows classical MD Python IDE. Here, a dedicated Python Script file is used with
breakpoints, step by step evaluation, Deploy exe and other features.

& MatDeck

Fle | lsyout | Home | Document | Insert | Math | Progaming | Graph | Data | Toobox | Hep

YA Gy g P B O # O& B4 %

Web — Compact
Text Python Editor Plugn Pythen GUI Resources Evaluste Evaluate Stop BuldAnd Deploy Buid Buid Build "~ Web Buid
Code Blok gopngs Manager SEHNOS Designer Step By Step Run Plugin Settings
Insert Settings GUL Evaluate Build Deploy
£ [Basic math 4% Tnsert & Functi © X
asic ma nser nctions
5 < = @i -
- —
%| Functions Help | # Python Program to find number of possible values of X to satisfy A mod X = B =
g Groups import math
|| Microbit Taolbox - import re
Miscellaneous
Modbus Functions o
Optimization def calculateDivisors (A, B):
PID =
Periodic Table noOfDivisors = @
Physics Templates
;z’;’[‘:"“”i"t | a = math.sqrt(N)
Project Mamagement for i in range(1, int(a + 1)):
Gt Binding = if ((N% i==0)): o
- - # count only the divisors greater than B
Functions if (i = B):
| (4| 1A noOfDivisors +=1
(7o [7o [t
e # checking if a divisor isnot counted twice
Break break if ((N / i) '= i and (N / i) > B):
no0fDivisors += 1;
Continue continue
Defined Types defined_types return noOfDivisors
Else else def numberOfPossiblewaysUtil (A, B):
if (A == B):
Else If else if return -1
if A < B, there are no possible values of X satisfying the equation
Evaluate Line evaluate_line if (A < B):
P return @
or # the last case is when A > B, here we calculatet he number of diviseors of (A - B -
Gets Argument From getc no0fDivisors = @
Console noOfDivisors = calculateDivisors:
If if return noOfDivisors
“ T 0
Arguments # Wrapper function for numberOfPossibleWaysUtil()
def numberOfPossibleWays(A, B):
Executes a statement repeatedly unti the condition noofsolutions = numberofPossiblewaysUtil(A, B) B
becomes false
Return value: Void #if infinitely many solutions available
Argument 1: Initial expression. Before any other if (noOfSolutions == -1):
element of the for statement, initial expression is print ("For A= " , A, "and B=", B —
gxeated only once. "X can take Infinitely many values"
Control then passes to condition expression. oo Y Y
Argument 2: Condition expression. Before execution " greater than " , A)
of each iteration of statement, incuding the first
iteration, else:
Statement is executed only if condition expression i B " B "
evaluates to true. print ("For A=" , A, "and B =", B |
Argument 3: Loop expression. At the end of each , ", X can take " , noOfSolutions
iteration of statement. After loap expression is " "
executed, condition expression is evaluated. values")
def password_ch(v):
if v == "\n" gr v == " "
i — return "Password cannot be a newline or space!"
| Examples Window |

Page lof 1 Words:0 Badly spelled: 0

Python Block

Users can edit and code Python directly in MD documents via Python Blocks, allowing them you
integrate their Python code with other MD features and functions. The image below is a screenshot
of a MD document which utilizes Python and MD features. MD Graphs also change in real time.

Transferring variables between MatDeck and

Python

In this example, we will illustrate how variables defined in MatDeck script are transfered to Python, and vice
versa. Furthermore, we will also demonstrate the use of graphs with exchanged variables. The
demonstration is performed by the calculating the FFT of the random signal in both MatDeck, and Python.

In order to calculate FFT in Python, it is necessary to import scipy package, and matplotlib package is
required to plot graph. Therefore it is necessary to add these two packages to successfully run example
below. In Windows, packages can be added using cmd window via commands such as:

>python -m pip install scipy

>python -m pip install matplotlib

Here is how we generate the random signal and calculate FFT in MatDeck. We use a MatDeck 2-D graph
to show the amplitude spectrum of the signal.

nn := 4096 //llength of the signal

x_in := normrandvec(0, 1, nn) //signal as random noise

X_in1 :=fft1(x_in)

freq := ynodes(f, 0, 1, nn) /ffrequency axis

graph := join_mat_cols(freq, abs(X_in1)) //amplitude spectrum of the signal

oW N -

Amplitude spectrum of the signal
Amplitude

graph

35

0 0.2 0.4 0.6 0.8

requency

Here is how Python is used to calculate FFT. The Python code is written inside the MatDeck document,
using the MatDeck variables ss and freq. The amplitude spectrum is plotted using the Python graph.

ss := 0 //Variable defined to store result in Python

#py

#This is python code

from scipy.fitpack import fft #we need fft function

ss1 =fft(x_in)

ss=ss1.tolist() #convert ss1 to list which is converted in C++ vector
import matplotlib.pyplot as plt #we need pyplot to plot result

#ltis possible to plot signal in Python, as well.

plt.plot(freq, abs(ss1))

Above is a perfect example of how the LabDeck Notes Engine allows user to combine Python Code
with MatDeck Script as well as MD GUIs. This allows you to create interactive WYSIWYG and
reproducible examples.

Call Functions

If a Python file is saved within the same directory as your MD document, users can call over
functions from the Python code directly in the MD document on the canvas. In the example below,
the Python functions VecDatal and VecData2 are called from the Python file in the same directory
and used in the canvas.

[E MatDeck Year Subscription — m]
| Fe | tayout | Home | Docment | Insert | Math | Programing | Graph | Data | Toobox | Hep

v e . % O % O ® ® O 3

6 o @ B = & S

Text Python Editor Plugn Python GUI Resources Evaluate Evaluate Stop BuidAnd Deploy Buid Buid Build

Code Block gopfnoe Manager Setings Designer Step 8y Step Run Plugin Settings

Insert Settings GUL Evaluate Build Deploy

2 . [E comelatons using Python dsta.mdd X |T0) Funcions.py X

%EBasmmaiﬁ 49 Insert ¥ Functions : e A
S
LS| Functions Help
ElGruups

MicoitToooex =11 - Correlations using Python data

Miscellaneous
Call functions allow users to utilize their Python code directly in a MatDeck document, meaning that they

Modbus Functions
gﬂnt‘m'zat'“” - can professionally mix their pre-made custom code with our thousands of features and solutions.

Periodic Table 1
Physics Templates)
Polynemials Height := VacDatal()

Pragraming -
Project Management

Qt Binding =
E—— We can use the call function to also our other vector and store it as a MatDeck variable, just ike we gave
|Functions above

s |78 A
Break break - Weight:= VacDataz()
Continue continue

_ Mow we can use all of MatDeck functions in combination with the data we Python functions that we have
called above. For example we can easily plot the graph using the join_mat_rows() functions. This will join

Defined Types defined_types

Flse else the two vectors vertically allowing us to plat them.
Else It else it 4
Graphi:= joi_nfmatfrnws(Height A ‘\"aight)
Evaluate Line evaluate_line
B Weight-Height graph
For for
¥
EEtSArgument Fom e s
onsole
250
It if H
Incude File include i
225
Plugin Name plugin_name . -
L) L]
Print Argument To i ~ (Il H
‘ G
I — _ 200 . .
Arguments
| I
N
The break statement ends execution of the nearest 175 n
enclosing loop or conditional statement in which it 7 - L] 1
appears. i n]
Control passes to the statement that follows the end =
of the statement, if any. _ 1
150 -
Return value: Void - %
8 84 E a8 70 72 74
We can also do more than just plot the data point we received, we can run several regressions on the data
3 and we can also see how the data would match up against several distributions.
Linear_Regression:= cm‘\-‘ezd(]j.nﬂt(Graphl), 63,75, 100)
10
- Here we have a plot for the linear regression of pur data set, we have used a linear regression but we
Examples Window - couldve chosen an Exponential, Polynomial, Loganthmic or Power Regression.

Page1of2 Words: 37 Badly spelled: 0

Getting started with Python IDE

The first step in getting started with a Python IDE is to open the correct one. This is done by clicking
on the small triangle on the left-hand side of the Open Icon.

IF18
Mew I})

Following this a menu will open up and you can choose which IDE you would use. The following IDE
will be in the drop-down menu: Console, Tkinter, Kivy, Custom Tkinter, PySide2 and MD Python.

s B, e BB _ & [©

hd
Mew COpen CpenUrl Save Save As Export Close Exit

ﬁ Mew Document
ﬁ Mew MatDeck Script

Exit

imi

: : Y -
E New Python Script ¥ | 5 Console Script
) New C File/® B¥) Tkinter Script
H) New H File BY¥) Custorn Tkinter Script

E
=

p_‘:] Kivy Script
B¥ pySide2 Script
B¥) MD Python Script

-

The console script will open an entirely blank Python Script which is designed to develop console
programs and not visual applications or GUIS. The other script will open their corresponding GUI
Designers as well as library specific IDEs.

Library-specific IDEs allow to produce accurate and relevant code suggestion while you type, this
gives you less errors and more time to code. Our code suggestions and auto-complete will help you
speed up you’'re coding by suggesting relevant variable, commands and Python functions.

[MatDeck Year Subscription

[Fe [tayout | rome [Doaument | nsert | Math | Progamng | Graph | Data | Toobox | Hep
N xS a %
G.a.aBB_ L5 O e
New Open OpenUr Save SaveAs Export Close Ext Preview Print
File Exit Print
4/~ Documents [ooament: X [T pycounterpy X [T pythons X [BE index_manuals.mdd -Read oty X [T0 pythons X [T
5
5 [Document 1 < - (@ Widgett::on_buttont
8 ;,:J PyCounter.py
(£ *¥) Python 3 . .
3 = .yt from PySide2.QtCore import *
2 [index_manuals.mdd - - - .
B prthon 5 from PyS;deZ.Qthdggts import
L from PySide2.QtGui import *
F¥ Python 6

class Widgetl(QWidget):
def __init__(self, parent=None}):
super(Widgetl, self).__init__(parent)
self.gui()

def gui(self): {...}

def on_buttonl(self):
self.buttonl.c

. . V' clicked
if __name_ == "' |
import sys W' customContextMenuRequested

app = QApplicat changeFvent

a :| W1??Et1() @ checkStateSet
a.show)
sys.exit(app. e>. childAt

@ childEvent

@ children

@ childrenRect
m childrenRegion
TS ;‘

Enter to insert. Up and down keys to select.

As you can see, our IDEs suggest the most suitable variables and also functions to speed up coding.

Extended Tooltip - Extended tooltip give the user information on any Python function that they
hover there mouse over.

else:

self.wl = Frame(parent)

self.wil.place(x = 8, v = @, width = 5860, height = 458)
self.buttonl = B[| Frame widget which may contain other widgets and can have a 30 border. il

P ar beoaddmam A m TV mmm f oar — AfAn v — A B B BN — M e = — AR

As you can see when we hover over the Frame() function, our tooltip appear giving us information
on what the function does. We can also have the Extended Tooltip as a popup or even docked on the
left-hand side of the IDE. To do this we need to left click on the IDE and select the Extended Tooltip
Option.

Find Usages

Teggle Comment

Extendefl. Tooltip
13

Once the Extended Tooltip is on, you can change how the tooltip is present using the settings icon on
the top right hand side of any Extended Tooltip popup.

QSizePolicy

Above we can see the Docking in dark mode, as mentioned before to change or close it you will need
to click the settings icon on the top right hand side.

Programming toolbar - Python

The programming toolbar is located at the top of the MatDeck document and houses various tools
and functions used to program in MatDeck.

) | Programing | . . .
T%} Lo ﬁ “ e @ o ﬁ o @’ o Q Gﬁ Web Compact

Text Python Editor Plugin Python GUL Resources Evaluate Evaluate Stop Buid And Deploy Build Build Build Web Build
Code Block Settings Manager Setings Designer Step By Step un Plugin Settings

Insert Settings GUL Evaluate Build Deploy

Here, users can manipulate and work with Python through different the options available.

Programming toolbar - Evaluate Build and Deploy

In all of our IDE, we have several options to run and evaluate your Python code.

O & O & m 3 %

Evaluate Evaluate Stop Build And Deploy Build Build Build Web Build
Step By Step Run Flugin Settings

Evaluate Build :'I':Flll:' L

Evaluate - The first option and most conventional method is the Evaluate button, it will run the
Python program without any interruptions or modifications.

©

Evaluate

Please Note: The Evaluate button will offer debugging information such as any syntax error whereas
Build and Run will only offer this information during the Build and Run and not during the runtime.

Evaluate Step By Step - The other method is to use the Evaluate Step By Step button. This will run a
debugger on the Python code while stopping at intervals where code blocks/functions or key points
in your code. This is done to better help you locate and resolve any bugs or logic issues.

>

Evaluate
Step By Step

Stop — This is used to cease any kind of evaluation that is occurring on your Python code. It also
works to stop the debugger and the Evaluate Step By Step.

o

Stop

Build And Run — Evaluates the program as a sperate and independent application without creating a
.exe file, it has the same effect as Evaluate but the program will not be run as a sub-program of
MatDeck and the application will be allocated separate memory and run as the same speed as a .exe
file, whereas Evaluate will run the program slower. However, Evaluate will start the program faster
compared to Build and Evaluate, but the program itself will always be faster with Build and Run.

10

Build And
Run

Deploy - The Deploy button will package your Python code as a .exe application file. This will allow
you to share your code as an independent application on an unlimited amount of windows devices.
Please note that you will need to add any additional files your application needs using the Build
Settings Button. This will not run the program

L

Deploy

Build Settings - Build Settings is used to configure your code when it is packaged into a application.
Here you will need to add any additional files that your code will call. This includes any images,
Python files or any other file.

%

Build
Settings

You can also choose whether or not you will deploy any MD Instruments as Images or as GUI
Widgets.

Breakpoints

Breakpoints in MatDeck are selected lines in Python code where the IDE will stop compiling. To add
a Breakpoint right click on the left-hand side of number in the programming line, to remove them
need to click on the red dot. Breakpoints are illustrated by red dots next to the code line number.

[Fﬁ_______jzﬁ

< = Wifv -

Python Program to find number of possible values of X to satisfy A mod X = B =
import math
import re

def calculateDivisors (A, B):
N=A-B
no0fDivisors = @

a = math.sqrt(N)
for i in range(1, int(a + 1))
if ((N % i == 0)):
count only the divisors greater than B
if (i = B):
no0fDivisors +=1

checking if a divisor isnot counted twice
if ((N/ i) '=1iand (N / i) = B):
no0fDivisors += 1;

return noOfDivisors

def numberOfPossibleWaysUtil (A, B):
if (A == B):
return -1
if A = B, there are no possible wvalues of X satisfying the equation
if (A = B):
return @

The IDE will compile each line of code until a Breakpoint is reached. Once, a Breakpoint has been
reached, the user will have to evaluate the program. Similarly, the IDE will compile all the code after
the Breakpoint until it reaches another Breakpoint. To reach a Breakpoint and execute the code, you
will need to Evaluate the document.

Programming Toolbar - Settings

« @ °

Editor Plugin PYthen
Settings Manager Settings

Settings

Python Settings - Python Settings allow the user to download any Python libraries without the need
of any command prompt or difficulties. There are three options: Install Default Python Packages,
Install Custom Python Packages and List Installed Python Packages.

ﬁ Python Settings

Install Default Python Packages

Install Custom Python Package

List Installed Python Packages

The Install Default Python Packages will download all the necessary Python Modules/Libraries that

MatDeck needs.

The Install Custom Python Packages will prompt a small message box with a text box.

B8 install Package ? >
Package Mame:
|

| K | Cancel

Here, you will only need to add the name of the library, nothing else. From there, MatDeck will

download the library for you.

The List Installed Python Packages will list all installed Python packages as well as what version is

installed.

Editor Settings - Similar to other IDEs, MatDeck provides the user with editor settings. Here, users
can edit the aesthetic features of the IDE itself.

E Code Editor Settings
Font

Family: |Liberation Mono

Selected Style

light

Style Color Sheme

Text
Link
election|

SearchResult
Parentheses

AutoComplete
CurrentLine
CurrentLineNumber
Occurrences
Occurrences.Unused

Number

String

Type

Local

Global

Field

Static
VirtualMethod
Function

Kevnanrd

ParenthesesMismatch

-

Size:

11

-

o Copy...

Text Color

Background:

Bold

Underline:

No Underline

Ttalic

Delete

<<

<<

Cancel

Users can edit the font family that is used when Python code is written and the Style Colour Scheme
window below shows examples of what different occurrences of code would look like in the selected
font family.

Programming Toolbar — Python Blocks

Tt

", @
Text Python
Code Block

Insert

The insert box of the Programming toolbar allows users to place Text Code and Python Blocks
directly into MD documents. Text Code blocks are used to initialise MatDeck script anywhere in MD
documents where Python blocks can be dropped in. Simply press the Text Code button for a
programming line to be established as such below.

Here, users can code in MD script directly into the MD document and can use MD script with other
MD functions and features. To insert a Python block into the Text Code block, simply make sure the
code line is selected and press Python Block.

2. 1 ' 1 ' 1 ' 2 ' 1 ' 3 ' 1 ' 4 ' 1 ' 5 ' 1 ' 6 ' 1 ' 7 ' 1A i

#py

HH##

A Python code block such as the one above will be created. Any code written within the #py and ###
tags will be in executable Python. Python code written within the block can be directly used with the
rest of the MD document and integrated with other MatDeck features such as below.

Using Python Blocks, we can combine our code with narrative text-editing, MatDeck Script, GUIs as well as
any custom GUIs you have made, all of this can be combine in one document.

#py
import numpy as np
import matplotlib.pyplot as plt

fig, (ax1l, ax2) = plt.subplots(2, 1)
make a little extra space between the subplots
fig.subplots_adjust(hspace=0.5)

dt = 9.01
t = np.arange(©, 38, dt)

Fixing random state for reproducibility
np.random.seed(19680801)

nsel = np.random.randn(len(t)) # white noise 1
nse2 np.random.randn({len(t)) # white noise 2
r = np.expl(-t / 0.05)

cnsel = np.convolve(nsel, r, mode='same') * dt # colored nolse 1
cnse2 = np.convolve(nse2, r, mode='same') * dt # colored noise 2

two signals with a coherent part and a random part
s1 =0.81 * np.sin(2 * np.pi * 10 * t) + cnsel
52 = 0.01 * np.sin(2 * np.pi * 10 * t) + cnse2

axl.plot(t, si, t, s2)
axl.set_x1im(@, 5)
axl.set_xlabel('Time')
axl.set_ylabel('s1 and s2')
axl.grid(True)

cxy, T = ax2.csd(s1, s2, 256, 1. / dt)
ax2.set_vylabel('CSD (dB)')

plt.show()

=

Opening GUI Designer

Please Note — There is a dedicated GUI Designer manual which explains GUI Designer use in
greater detail. For more information, please refer to the GUI Designer manual.

The first thing you need to do to open the MD Python GUI Designer is to select the MD Python
Script. This is done by hovering over the small triangle next to the New icon.

File [Layout [Home [Document [Insert [Ma

BB, e BB 4 [©

Mew Open OpenUrl Save Save As Export Close Exit

-

ﬁ Mew Document
ﬁ Mew MatDeck Script I

Exit

E Mew Python Script » ij Console Script
& € New CFile ¥ Tkinter Script
Iéw New H File ij Cus@m Tkinter Script

PJ"] Kivy Script
B¥ pySide? Script
E¥ MD Python Script

To open the MD Python GUI Designer, go to Programming tab and press the ‘GUI Designer’ button

[Fle | tayout [Home [Document | Insert | mMath [FPrograming| Graph | Data | Toolbox | Help
T, @ U A = “
i
o) i} (> B O & m O % R
Text Python Editor Plugin Python GUI I:} Resources Evaluate Evaluate Stop Build And Deploy Build Build Build Web Build
Code Block Seftings Manager Settings Designer Step By Step Run Plugin Settings
Insert Settings GUI Designer Evaluate Build Deploy

A new window will open, which will contain a list of all the widgets that have been created in the
current MD Python Script (Picture 2). From this window you can create a new widget, edit or delete
the existing one. To open the MD Python GUI Designer, you will need to click the New button, the
edit button will only open the MD Python GUI Designer if there is a widget beforehand.

o
=
- 3
o
-
=]
-
=
.

The image above shows a screenshot of how the GUI Designer can be used in Python.

MPY GUI Designer Files in MD Products

MPY Files

Our GUI Designers generate 2 files, one file is a normal Python file and the other file is used by our
GUI Designer to save and remember what your GUI looked like in the GUI Designer, it is a .mpy file
and it cannot be opened. The file is just for MatDeck.

Marne Date modified Type Size

|J Example.mpy 14/11,/2022 18:52 MPY File KB
[# Example.py 14/11/2022 1&:52 Python File 3KB

&5

Dark Mode

MatDeck and all its applications can be changed to dark mode via the Layout Tab.

J L.

Light Theme Layout 2
Light Therne

#* Dark Themn
IFERATE q\‘}

Once you have selected the dark mode, you will have to restart MatDeck to apply the change. The
Dark Theme will also be applied to all GUI Designers, SCADA, Virtument and other Toolboxes. Please
Note that this will affect our GUI Designers the most as any GUI generated will also be in a dark
theme.

MD Python

MD Python is the official Python Binding for MatDeck Script, it brings all 1600+ MD function to be
used directly in Python. This allows users to use Pythons easy Syntax with our efficient function to
bring simple solutions to complex.

With MD Python, you can also use MD Instruments, these virtual instruments allow you to read and
write data in real time.

Call Functions

Call functions allow the user to utilize Python functions directly in a MatDeck Canvas and Document,
to do this you will first need to save the Python file in the same directory as the MD file. For
instance, here is an example Python function which we will use in our MatDeck document.

import re

def password_ch({v):
if v == "\n" or v == " ™:
return "Password cannot be a newline or space!"
if 9 == len(v) == 28:
checks for occurrence of a character
if re.search(r'(.)\1N\1', v):
return "Weak Password: Same character repeats three or more times in a row"
checks for occurrence of same string
if re.search(r'({..)(.*?)\1"', v):
return "wWeak password: Same string pattern repetition”
else:
return "Strong Password!"
else:
return "Password length must be 9-20 characters!"

From there, you will need to type call into the canvas, this will produce a blank function with no
name or arguments.

Password_Check := cal

S N

f,l" call_function
)‘,t" CHEMICAL_IMNFO_Form

f.l" atdevice_ai_logical_channels l

Please note that we are not using the function call_function() but the function call().

Password_Check:= m])

Now, all you need to do is type in the function name and all of its arguments.

Password_Check:= password_ch(:]'

Example of Call Functions

As you can see in the example below, call functions allow us to combine Python code we already
have with MD features and functions. Here we use the call functions to utilize the Python functions
VecDatal() and VecData2() while being able to use MD functions such as our Linear Regression as
well as our 2D Graphs.

As mentioned above, we use these Python functions by first using the call function.

ﬁc call b E

]‘l" call_function
f,lc" CHEMICAL_INFO_Form

f.’(" atdevice_ai_logical_channels -

Please note that we are not using the function call_function() but the function call().Once we
select call(), a blank function will appear.

Height := HGD

From there we can enter the name of our Python function.

Height := i?ec[}atal(}

Now, the Python function is active and ready for use.
We will also apply the same steps to get the Python function VecData2().

[E MatDeck Year Subscription -
[Fle | tayot | Home | Doament | Insert | Math | Progamng | Gaph | Data | Toobox | Hep
v @ . % O # O & W {5
> o @ 5 = o T e oo
Text Python Edtor Plugn Python GUI Resources Evaluate Evaluate Stop BuldAnd Deploy Buld Buid Buid ' web Build
Code Block Setfings Manager Setngs Designer Step By Step Run Plugin Settings
Insert Settings GUL Evaluate Build Deploy
2 N \H Correlations using Python data.mdd % |"' Functions.py %
EEBaslcmalﬁ 49 Insert ¥ Functions A R R . R R R Y
5 Functions Help
g Groups . .
Mirbit Teclbcs 2 Correlations using Python data
Modbus Functions - Call functions allow users fo utilize their Python code directly in a MatDeck document, meaning that they
g%t‘m'zat'“” can professionally mix their pre-made custom code with our thousands of features and solutions.
Periodic Table 1
Physics Templates
Polynomials Height:= VecDatal()
Programing -
Project Management
Gt Binding =
S 5 We can use the call function to also our other vector and store it as a MatDeck variable, just ike we gave
|Functions above
6| | 8| |bA
Bresk bresk Weight := VecDataz()
3
Continue continue
Defined Types defined_types _ MNow we can use all of MatDeck functions in combination with the data we Python functions that we have
. , called above. For example we can easily plot the graph using the join_mat_rows() functions. This will join
& e the two vectors vertically allowing us to plot them.
Else It else if 4
Graphi:= joi.n_mat_rows(Height s Weight)
Evaluate Line evaluate_line
B Weight-Height graph
For for
Gets Argument From . Y
Console gete
B 250
It if H
Incude File include .
225
Plugin Name plugin_name . -
L L]
Print Argument To i e H
'7. L4 _ 200 . .
Arguments
| I
u
The break statement ends execution of the nearest 175 n
endlosing loop or conditional statement in which it 7 - L] 1
appears. . H
Control passes to the statement that follows the end =
of the statement, if any. _ '
150 -
Return value: Void X
8 84] E 70 72 i
We can also do more than just plot the data point we received, we can run several regressions on the data
9 and we can also see how the data would match up against several distributions.
Linear_Regression:= cu.rve2d(]jnﬁt(Graph1), 63,75, 100)
10/
- Here we have a plot for the linear regression of pur data set, we have used a linear regression but we
Examples Window couldve chosen an Exponential, Polynomial, Loganthmic or Power Regression.
Page 1of 2 Words: 37 Badly spelled: 0

Python Manuals

All Manuals are available in the Help Tab under User Manuals.

| B |

[

When clicked, a Read-only page will open which contains all MD Manuals, near the bottom of the
page, all Python Manuals will be available including the Tkinter, Kivy, Custom Tkinter, PySide2 and
MD Python GUI Designer Manuals.

