MD Script Programing

General

MD Products allows the integration of text editing, script language, the ability to generate GUIs, flowcharts,
virtual instrumentation, data visualization, programing, and parallel processing all to be comprehensively
done within its documents. Expressing programming ideas in MD Products takes less lines of code
compared to others.

scription
File Layout Home Document Insert Math Programing Graph Data Toolbox Help

e B] 3 > > " [4 o

Text Python Exditor Plugin Python GUI Resources Evaluate Evaluate Stop Build And Deploy Build Build Build
Code Block Settings Manager Settings Designer Step By Step Run Plugin Settings

M Basic math ¥ Insert Functions M3 EqualizerToolkit.mdd

Functions Help

Documents

194
195 Al pow (18
Digital Signal Processing : 196 FrePoints subset(Octave, ©, 8, NumOfSliders
IR R 197 DesRes join mat FrePoints, Al
gszﬁiﬁﬁhgm 198 DesRes = join mat ®, 1], DesRes
D 199 DesRes = join mat DesRes, [Fsamp
200 FrePointsInt yn s(x, @, Fsamp
Equalizer Inverse Toolkit 201 widget wvalue(cb66 "akima"
Equalizer Toolkit 202
Equations 203 DesRes = akimaspline(DesRes, FrePointsInt

FFT 204
FTDI Plugin > 285

Groups

Math

widget value(cb66 "cubic b"
Functions 206 : = -
207 DesRes = cubi ine(DesRes, FrePointsInt
* 208
209 DR DesRes
2168 DRg join mat rows(ro
211 is undefined(DRg
Ceil Zale
213 set widget value
Cosecant s 214 ImpRes
_ 215
Cosine i 216 set graph range(gra, 20, Fsamp
al
218 DesRes re rec (DesRes
Cotangent ol 219 WinType widget value(cb44
220
Cotangent Hyperbolic coth 221 DesResFlip flip(DesRes, 2
DesFFT join mat cols(DesRes, subset(DesResFlip
Cube Root cbrt size(DesResFlip P
himp fftil(DesFFT
Arguments Te size(himp
himpshift join mat cols(subset(himp, @ Te
Calculates the absolute value of an inputted subset (himp, 6, 0, © e 1 2 al
argumentx. _ himpshift com xre(himpshift
iﬁzﬁﬁ%ﬁ&pm'mm“mcmrmw”“dm' wind mat tra se (window(WinType, size(himpshift
ImpRes mul (himpshift, wind

Return value: Absolute value of x FIRres rfreqres(ImpRes Length at ik
Argument 1: Real or complex value x fre o DR. @

Cosine Hyperbolic

FIRresg join mat is(fre, 2C og(abs(FIRres

vec vector allocate(2
vec[@ DRg
vec[1 FIRresg

set widget value(gra, vec
calc

initrlt
Examples Window

Page 1of 1 Words: 0 Badly spelled: 0

Above we can see an example of the MatDeck Script IDE which is the perfect environment for
programming and coding custom GUIs, applications and other large quantities of code. The IDE has
features such as Breakpoints,Debugging and several different execution options.

Breakpoints

M2 EqualizerToolkit. mdd

NumOfSliders

ct -1t
initrlt

mn, "Equalizer Frequency Response"
50 20

Breakpoints in MD Products are selected lines in Python code where the IDE will stop compiling. To add a
Breakpoint right click on the left-hand side of number in the programming line, to remove them need to click
on the red dot. Breakpoints are illustrated by red dots next to the code line number.

type (mn "widget" type (mn "widget widget"

The IDE will compile each line of code until a Breakpoint is reached. Once, a Breakpoint has been
reached, the user will have to evaluate the program. Similarly, the IDE will compile all the code after the
Breakpoint until it reaches another Breakpoint. To reach a Breakpoint and execute the code, you will need
to Evaluate the document.

Extended Tooltips

Extended Tooltips are another MatDeck Script IDE feature. They give the user information on any Python
function that they hover there mouse over.

Executes the statemnent if the expression is true

As you can see when we hover over the if() function, our tooltip appear giving us information on what the
function does. We can also have the Extended Tooltip as a pop-up or even docked on the left-hand side of
the IDE. To do this we need to left click on the IDE and select the Extended Tooltip Option.

Find Usages

Toggle Comment

Extendef\Tooltip

Once the Extended Tooltip is on, you can change how the tooltip is present using the settings icon on the
top right hand side of any Extended Tooltip pop-up.

Above we can see the Docking in dark mode, as mentioned before to change or close it you will need to
click the settings icon on the top right hand side.

Programming Toolbar

In all of our IDE, we have several options to run and evaluate your MatDeck Script code.

O & O & m X %

Web Compact
Evaluate Evaluate Stop Build And Deploy Buid Build Build Web Build
Step By Step Run Plugin Settings
Evaluate Build Deploy

Evaluate

The first option and most conventional method is the Evaluate button, it will run the MatDeck Script program
without any interruptions or modifications.

©

Evaluate

Please Note: The Evaluate button will offer debugging information such as any syntax error whereas Build
and Run will only offer this information during the Build and Run and not during the runtime.

Evaluate Step By Step
The other method is to use the Evaluate Step By Step button. This will run a debugger on the MatDeck

Script code while stopping at intervals where code blocks/functions or key points in your code. This is done
to better help you locate and resolve any bugs or logic issues.

>

Evaluate
Step By Step

Stop

This is used to cease any kind of evaluation that is occurring on your MatDeck Script code. It also works to
stop the debugger and the Evaluate Step By Step.

o

Stop

Build And Run

Evaluates the program as a sperate and independent application without creating a .exe file, it has the
same effect as Evaluate but the program will not be run as a sub-program of MatDeck and the application
will be allocated separate memory and run as the same speed as a .exe file, whereas Evaluate will run the
program slower. However, Evaluate will start the program faster compared to Build and Evaluate, but the
program itself will always be faster with Build and Run.

10

Build And
Run

Deploy

The Deploy button will package your MatDeck Script code as a .exe application file. This will allow you to
share your code as an independent application on an unlimited amount of windows devices. Please note
that you will need to add any additional files your application needs using the Build Settings Button. This will
not run the program

L

Deploy
Build Settings

Build Settings is used to configure your code when it is packaged into a application. Here you will need to
add any additional files that your code will call. This includes any images, MD files or any other file.

%

Build
Settings

You can also choose whether or not you will deploy any MD Instruments as Images or as GUI Widgets.

MD Document

Below we can see the MD Document which is perfect for visual and interactive computing and much less
code heavy. The screen shot itself is of the MatDeck Script Manual which you are reading now.

The main objectives of this manual are: give general tips and suggestions about how to program in MD
Products, teach enough MatDeck script so that it is easy to do most data manipulations, analysis, and
comparison, as well as to a provide firm knowledge foundation to learn more advance MD techniques.

Editing Code

There are three ways to edit script code and programming in MD Products: Math objects within a canvas,
writing code in text mode, or the MD IDEs.

The first two options are used within a regular MD Document and MD IDEs are a dedicated code editing
document. For short, simple and interactive mathematical and programing calculations, you should uset he

Canvas and Math objects (see Insert and Math tab)found within a MD document.

edit_code()
{
print("HeIIo world")

}

Make programm edit code() Call function

For more complex programing withina MD document, MD Products provide code editing via the text

mode. It is enabled by clicking Text/Code icon in the Math Tab, or using ctrl + i. The code lines are
numbered as seen here:

// Edit code here
varaiable := 5

In order to get back to text editing you must first click the Text/Code icon in the Math Tab, or use ctrl + i.

For more complex programing, MD Products provides the alternate option, MD IDEs. The IDEs are
generated by using File-New and then the drop down tool bar next to it select the MatDeck Script option.
The MatDeck IDE is dedicated for programming and it can contain only code as text .

MatDeck documents are evaluated every time after a = or a new line key is pressed in the canvas and you
will get the results immediately after. Also you can click on the document, use ctrl + e or the Evaluate

button to explicitly evaluate and execute codes within the document at any point in time.

MD documents and scripts can be compiled into executable applications. Behavior of such applications will
be the same as in the source script but it will run much faster. For compiling processes, you should use the

Build And Run button from the tool bar. You may be asked to set a development kit if one is not present.
Syntax

MatDeck Scriptis a case-sensitive language. This means that the language keywords, variables, function
names, and any other identifiers must always be typed with a consistent capitalization of letters. Also keep
in mind that script is executed from the left to the right and from the top to the bottom.

Data Types

One of the most fundamental characteristics of a programming language is the set of data types it
supports. These are the types of values that can be represented and manipulated in a programming
language.

MatDeck Script allows you to work with these data types:

boolean

integer

double

complex
symbolic value
string

symbolic function
unit

vector

matrix
image
expression
equation
interval
object

MatDeck Script also defines the trivial data type undefined (void).

Composite data types like vectors, matrices, equations and intervals are composed of primitive data types
and so, in canvas mode you need to enter its keyword before you can enter its data.

type(true) ="boolean type(a) ="symbolic value" type 12 —atriy”
type(3) ="integer" . 3 4
type("a") ="string" L
type(3.5) ="double"
type(sin (x)) ="symbolic function" _3
type(4 + 7i) ="complex" type| | g |) ="vector
type(a + b) ="expression" L
type (void) = "undefined" type(m) ="symbolic value" type((3,5]) ="interval"
type (]]) ="undefined" type(x== 3) ="equation"
Variables

Like many other programming languages, MatDeck Script has variables. Variables can be thought of as
named containers. You can place data into these containers and then refer to the data simply by naming the
container.

Variable declaration and initialization

Before you use a variable you must declare it. Unlike many other languages, you don't have to tell MatDeck
during variable declaration what type of value the variable will hold. Variables can hold a value of any data
type. Variables will get its initial value type during variable declaration and it can be changed during the
execution of a program.

Variables are declared with the := operator as follows.

a: =7

name :="Your name"
type(a) ="integer"
type(name) ="string"

Storing a value in a variable is called variable initialization. You should do variable initialization at the time
of variable creation. Also you can change the variable value later with the variable assignment operator =.

name ="My Name"
name ="My Name" 4-/—(when entered variable assignment operator v=looks like = but bold)
name ="My Name"

You can re-declare the same variable again but it is good practice to use variable assignment operator like
in the example above.

Variable scope

The scope of a variable is the region of your code or document in which it is defined. MatDeck Script
variables have two scopes:

e Global scope - A global variable has a global scope which means it can be defined anywhere in your
code or document.

e Local scope - A local variable will be visible only within a function where it is defined. Function
arguments are always local to that function.

Within the body of a function, a local variable takes precedence over a global variable with the same name.
If you declare a local variable or function argument with the same name as a global variable, you effectively
hide the global variable. Take a look into the following example.

var:="global variable"

()
{

var:="local variable"
2 retun(var) fn() ="local variable"

}

Variable names

While naming your variables in MatDeck Script, keep the following rules in mind:
¢ You should not use any of the MatDeck Script reserved keywords as a variable name.
e Variable names should not start with a numeral (0-9). They must begin with a letter.
e Variable names are case-sensitive. For example, Name and name are two different variables.

Operators

An operator is a symbol that tells the an MD Product to perform specific mathematical or logical operation.
MatDeck Script operators can also perform operations between different data types if it is possible.

MatDeck Script supports the following types of operators:

Arithmetic Operators

Relational Operators

Logical Operators

Bitwise Operators

Assignment Operator

Compound Assignment Operators
Subscript Operator

Arithmetic Operators

The following arithmetic operators are supported by MatDeck Script:

+ Adds two operands

- Subtract second operant from the first
* Multiplies both operands

/ Divides numerator by denominator

% Division reminder

? :I 5Il= 10" n n 1 2 — 3 4
I"+"am" ="lam 34+2—56
"Cat"-"t" =undefined

Relational Operators

The following relational operators are supported by MatDeck Script:
e == Checks if the values of two operands are equal or not, if yes then condition becomes true.

e I= Checks if the values of two operands are equal or not, if values are not equal then condition
becomes true.

e > Checks if the value of left operand is greater than the value of right operand, if yes then condition
becomes true.

e < Checks if the value of left operand is less than the value of right operand, if yes then condition
becomes true.

e >= Checks if the value of left operand is greater than or equal to the value of right operand, if yes then
condition becomes true.

e <= Checks if the value of left operand is less than or equal to the value of right operand, if yes then
condition becomes true.

x>y =false 7>5 =true 11 11 11 00
== = > =false
x<y =false L 11| T |7 11| 7o o
true==1 =true

Logical Operators

The following logical operators are supported by MatDeck Script:
e && Called Logical AND operator. If both the operands are non-zero, then condition becomes true.
e || Called Logical OR Operator. If any of the two operands is non-zero, then condition becomes true.

e [Called Logical NOT Operator. Use to reverses the logical state of its operand. If a condition is true,
then Logical NOT operator will make false.

Bitwise Operators

The following bitwise operators are supported by MatDeck Script:
e & Bitwise AND
e A Bitwise HOR
e |Bitwise OR
e << Bitwise Shift Left
e >> Bitwise Shift Right
e ~Bitwise NOT

Compound Assignment Operators

e +=Add AND assignment operator, It adds right operand to the left operand and assign the result to
left operand.

e -= Subtract AND assignment operator, It subtracts right operand from the left operand and assign the
result to left operand.

e *= Multiply AND assignment operator, It multiplies right operand with the left operand and assign the
result to left operand.

e /= Divide AND assignment operator, It divides left operand with the right operand and assign the
result to left operand.

¢ %= Modulus assignment

e &= Bitwise AND assignment

e A= Bijtwise HOR assignment

e |=Bitwise OR assignment

e <<= Bitwise shift left assignment
e >>= Bitwise shift right assignment

Subscript Operator

[1gives access to the vector or matrix element

|12

a.= 3 4 5 12
a|l=]3 4

afo] =1

alo]=5
S R 2
a [1]_ 3 4

afo] =5
5 2
9713 4
Operators Precedence

Operator precedence determines the grouping of terms in an expression. This affects how an expression is
evaluated. Certain operators have higher precedence than others; for example, the multiplication operator
has higher precedence than the addition operator.

Operators with the highest precedence appear at the top of the list, those with the lowest appear at the

bottom. Within an expression, higher precedence operators will be evaluated first.
° [1]

I~* & (last two are dereference and address-of)

*1%

+ -

<< >>

<><=>=
o ==I|=
e &

A

|
&&

+= == [=2 0 =<<= >>= &= A= |=

Control Statements: if, else if and else

While writing a program, there may be a situation when you need to adopt one out of a given set of paths. In
such cases, you need to use conditional statements that allow your program to make correct decisions and
perform right actions.

MatDeck Script supports conditional statements which are used to perform different actions based on
different conditions. These statements are:

e if statement is the fundamental control statement that allows MatDeck Script to make decisions and
execute statements conditionally.

e else if (can be used only after if)
® else (can be used only after if or else if)

condition(arg)

{
if(arg ==0) condition(1) ="argis 1"
{

return("arg is 0“) (this statement is executed)
} /

else if(arg ==1)
{
return("arg is 1“)

¥

else

{
return("arg is not 0 and not 1")

¥

Loops

There may be a situation, when you need to execute a block of code several times. In general, statements
are executed sequentially, the first statement is executed first, followed by the second, and so on.

MatDeck Script provides the following type of loops to handle looping requirements:

¢ while loop Repeats a statement or group of statements while a given condition is true. It tests the
condition before executing the loop body.

e for loop Execute a sequence of statements multiple times and abbreviates the code that manages
the loop variable

Statement body is executed until this condition is true.
Conditionis tested every time before statement body is
executed.

Control variable. ltis J

def ned and initiated once.
Ioop1 |00p2 Control statement. It is
1 =10 executed every time after
a-= statement body.

hil
\{Nlea>0 fOFa—O ,a<10,a+=1
- a-=1 2 {.
1
; }
. }
b

Loop Control

There may be a situation when you need to come out of a loop without reaching its bottom. There may also
be a situation when you want to skip a part of your code block and start the next iteration of the loop.

To handle all such situations, MatDeck Script provides break and continue statements. These
statements are used to immediately come out of any loop or to start the next iteration of any loop
respectively.

e break statement is used to exit a loop early, breaking out of the enclosing curly braces.

e continue statement starts the next iteration of the loop and skip the remaining code block. When
a continue statement is encountered, the program flow moves to the loop check expression
immediately and if the condition remains true, then it starts the next iteration, otherwise the control
comes out of the loop.

// Sum of numbers from 10 to 20
loopcontol()

a =0

for(n := 0; n < 30; n += 1)
{

if(n < 10)
{

continue

}

a +=n
if(n >= 20)
{

break

}
}

return(a)

}
myfn()

}

We can define a function with function arguments. Arguments are values passed to the function body.

myFirstFunction(argl, arg2)

{

return(argl + arg2)

}

Calling a function

To invoke a function somewhere later in the script, you would simply need to write the name of that function
as shown in the following code.

s:=myFirstFunction\5 , 7
myFirstFunction(Z , 3) =5 y ()

s=12
Return statement

A MatDeck Script function can have an optional return statement. This is required if you want to return a
value from a function. Functions without return statement will return void (undefined).

Classes

Classes and are often called user-defined types. A class is used to specify the form of an object and it
combines data representation and methods for manipulating that data into one neat package. The data and
functions within a class are called members of the class.

Class definition
When you define a class, you define a blueprint for a data type. This doesn't actually define any data, but it
does define what the class name means, that is what an object of the class will consist of and what

operations can be performed on such an object.

A class definition starts with the keyword class followed by the class name; and the class body, enclosed by
pair of curly braces.

Define an object

A class provides the blueprints for objects, so basically an object is created from a class. We declare
objects of a class with exactly the same sort of declaration that we declare variables of basic types. In that
process a class constructor (main function with the same name as class) is executed.

The public data members of objects of a class can be accessed using the direct member access operator

()

Functions

A function is a group of reusable code which can be called anywhere in your program. This eliminates the
need of writing the same code again and again. It helps programmers to write modular code. Functions
allow a programmer to divide a big program into a number of small and manageable functions. Also control
and loop statements are available only in functions, if the code is used in the Canvas.

Defining a function

Before we use a function, we need to define it. To define a function in a new line, enter the function name
and then follow with closed brackets (). After that, press the enter key and in the new line add a { bracket
and press enter again. The MD Product will add the closing } bracket. The space between the {} brackets is
called the function body.

class rectangle
{
wid = 0
hei := 0
rectangle(w, h)
{
wid = w
hei = h
}
surface()
' return(wid * hei)
b
}

r1:= rectangle(3 , 4)
r2:= rectangle(2 , 2)

r1 .surface() =12
r2.surface() =4

r1.wid =3
r1.hei =4
r2.wid =2

r2.hei =2

Special Programming statements and functions

Plug-in name statement

Plug-in naming. For more see plug-in user manual.

' plugin_name("my plugin")

Console input and output

All MatDeck scripts can be compiled into executable files. You can use the following functions to print to the
console and get user input from the console.

prmt(some text") (console input)

pnnt(to strmg) C:= getC("enter text and prees enter")

In the document or script getc() will return its type argument as return value and print() will do nothing.

Programming Examples

e Minimum and maximum of vector (.mdd), (.pdf)
* Recursion (.mdd), (.pdf)
* Newton - Raphson method (.mdd), (.pdf)
¢ Secant method (.mdd), (.pdf)
e Class (.mdd), (.pdf)

https://labdeck.com/examples/minMaxProgramingExample.mdd
https://labdeck.com/examples/minMaxProgramingExample.pdf
https://labdeck.com/examples/Recursion.mdd
https://labdeck.com/examples/Recursion.pdf
https://labdeck.com/examples/newton.mdd
https://labdeck.com/examples/newton.pdf
https://labdeck.com/examples/secant.mdd
https://labdeck.com/examples/secant.pdf
https://labdeck.com/examples/Class.mdd
https://labdeck.com/examples/Class.pdf
PluginUserManual.pdf

